Abstract
The climate crisis and the degradation of the world's ecosystems require humanity to take immediate action. The international scientific community has a responsibility to limit the negative environmental impacts of basic research. The HECAP+ communities (High Energy Physics, Cosmology, Astroparticle Physics, and Hadron and Nuclear Physics) make use of common and similar experimental infrastructure, such as accelerators and observatories, and rely similarly on the processing of big data. Our communities therefore face similar challenges to improving the sustainability of our research. This document aims to reflect on the environmental impacts of our work practices and research infrastructure, to highlight best practice, to make recommendations for positive changes, and to identify the opportunities and challenges that such changes present for wider aspects of social responsibility.
The acronym **HECAP** was adopted in the early stages of this initiative, otherwise in common use to refer to High Energy Physics, Cosmology and Astroparticle Physics\(^1\). With the subsequent inclusion of key contributions from the **Hadron and Nuclear Physics** community, with whom HECAP share common research infrastructure and common challenges in the pursuit of improved environmental sustainability, this acronym was modified to **HECAP+**. This modification is also intended to emphasise that many of the issues highlighted in this document apply broadly to all members of the basic research community.

\(^1\) Examples include the HECAP Research Section of the Abdus Salam International Centre for Theoretical Physics (see https://www.ictp.it/hecap); the Latin American Association for High Energy, Cosmology and Astroparticle Physics (see https://www.ictp-saifr.org/laa-hecap/); by the Latin American Giant Observatory (see http://lagoproject.net/lasf4ri29.html); and in the Latin American Strategy for Research Infrastructures for High Energy, Cosmology, Astroparticle Physics (available at https://arxiv.org/pdf/2104.06852.pdf).
Statement of Intent

This reflective document was developed as part of a grassroots initiative Striving towards Environmental Sustainability in High Energy Physics, Cosmology and Astroparticle Physics.

Its focus is not to stipulate the research that our communities should undertake, nor to debate its intrinsic value. Rather, it is intended to be a synthesis of current data, best practices, and research in climate science and sustainability, as applied to our fields to the best of our ability as physicists, and a reflection on the roles that our communities can play in limiting negative environmental impacts due to our research work and scientific culture.

The scope of the document is inspired by the holistic approach of annual environmental reports of major institutes [1, 2], which include emissions directly related to research and collateral emissions, such as from personal commutes and institutional catering. Any imbalance in its content, in part, reflects imbalances in the availability of reliable data and resources relating to the environmental impact of aspects of our communities’ activities. Redressing this imbalance will require input from across our communities, in particular to identify the technical challenges of limiting the environmental impacts of our current and future research infrastructure.

While this document is primarily framed from the perspectives of high energy physics, cosmology, astroparticle physics, and hadron and nuclear physics (HECAP+), much of its discussion applies to basic research more generally. Its broad scope is intended to provide a first step toward greater coordination across the community in efforts to address environmental sustainability, and it is hoped that it may serve as a useful reference for our and other fields.

Comments on this document are welcome. Please get in touch with us via the online platform at: https://sustainable-hecap-plus.github.io/, where you will also find the latest version of the document. Individual endorsement of this document can be made at: https://indico.cern.ch/e/sustainable-hecap-plus. For institutional endorsements, please email us directly at sustainable-hecap-plus@proton.me.

Thank you for taking the time to read this document.
Contents

Forewords
6

Executive Summary
15

Outline
18

1 Preliminaries
19
1.1 Introduction
19
1.2 Previous and Parallel Initiatives
26
1.3 Impelling Positive Change
28
Recommendations — Impelling Positive Change
29
1.4 United Nations Sustainable Development Goals
30

2 Computing
37
Summary
37
Recommendations — Computing
39
2.1 Hardware
40
2.2 Software
41
2.3 Infrastructure
43

3 Energy
48
Summary
48
Recommendations — Energy
51
3.1 Low-Carbon Energy
52
3.2 Energy Saving and Recuperation
61

4 Food
62
Summary
62
Recommendations — Food
63
4.1 Food Production
64
4.2 Food Service
65

5 Mobility
69
Summary
69
Recommendations — Mobility
71
5.1 Commuting
72
5.2 Business Travel
74

6 Research Infrastructure and Technology
86
Summary
86
Recommendations — Research Infrastructure and Technology
88
Environmental sustainability in basic research

6.1 Accounting and Reporting .. 89
6.2 Technological Improvements 93

7 Resources and Waste
Summary .. 105
Recommendations — Resources and Waste 106
7.1 Resources .. 107
7.2 Waste ... 111

8 Outlook ... 116

Acknowledgments ... 117

A Supplementary Data for Figure 1.4 ... 118

Bibliography ... 120

Acronyms and Abbreviations ... 148

Best Practices ... 150

Case Studies ... 151

Figures ... 152

Tables ... 153

Authors ... 154

Endorsers ... 156
Forewords

What should we do to limit the negative environmental impacts arising from our scientific community?

Productive discussions on this crucial issue are often hindered by a number of roadblocks. Climate change scepticism is fortunately not very frequent in our community, but the same cannot be said, for instance, of *climate change whataboutism* — “What about other communities who produce way more greenhouse gas emissions than us? Why should we make efforts, when others are not doing enough?”.

But even for those of us who recognize the importance of doing something, a general lack of data and detailed information often prevents us from aligning our actions with our ethical values — “Does my Carbon footprint increase more by flying to conferences a couple of times a year or by eating red meat a couple of times a week? By computing or by commuting?”.

This timely and thought-provoking paper, arising from the grassroots initiative *Striving towards Environmental Sustainability in High Energy Physics, Cosmology and Astroparticle Physics*, provides a much welcome reflection on how to remove these and other common roadblocks towards sustainability, and how to put in place concrete actions to limit our environmental impact.

The reader will find here a synthesis of current data, best practices, and research in climate science and sustainability, and a set of concrete recommendations that clearly show how we can empower individuals and the broader community to take direct action and responsibility for mitigating climate change.

I encourage every member of our community to reflect upon the contents of this document and to actively engage in the ongoing dialogue surrounding this crucial topic. I hope it will spark broader change and promote a culture of sustainability in our community and beyond.

Prof. Gianfranco Bertone
University of Amsterdam
Director, European Consortium for Astroparticle Theory
The conclusions from the IPCC are clear: global heating and climate change are an existential threat to human civilization. All aspects of society need to follow the recommended guidelines and eliminate greenhouse gas emissions as quickly as possible. The research fields of particle physics, cosmology and astroparticle physics have a role to play in this great transition. Not only are the emissions associated with those fields relatively large compared to other areas of daily life, but as researchers and scientists we understand the science and we can use our creativity and ingenuity in finding solutions. By placing sustainability at the forefront of our scientific approaches, we will provide guidance to other research fields and convey to society the importance of this topic. It is our duty to act now such that future generations can also enjoy the wonders of exploring the secrets of the universe. We used to pride ourselves with being great innovators at the cutting edge of technology. Let’s be ambitious again and help tackle all of the challenges associated with a net zero economy. In the process we will improve our health and make our research fields more diverse and accessible to all regions of the Earth. As scientists ourselves we can not ignore the science, there is a climate emergency and everyone needs to play their part.

Prof Véronique Boisvert
Centre for Particle Physics Group Leader at Royal Holloway, University of London
Founder and Co-coordinator of the ATLAS Sustainability Forum
Co-coordinator of the Snowmass 2021 Topical Group: Environmental and Societal Impacts

The climate crisis is one of the most pressing problems facing humanity today: the long-term survival of our species, and countless others, will be impacted critically by when and how we choose to address it. This is not an issue we can ignore or put off; action needs to be taken in the very near-term — the next few decades — if we are to avoid a critical rise in mean global temperature that is predicted to result in major changes to climate and weather patterns, the first signs of which we are already experiencing. Of course tackling such a monumental issue requires global collaboration and coordinated action by world governments. But as individuals, as well as via our memberships of teams, groups, institutes, laboratories and
research organisations, each of us can, and must, take our individual responsibility for helping to ensure the vitality of our planetary environment and sustainability of its resources.

For those of us working in the scientific fields represented, this report provides a clarion call for action on sustainability. The report both draws attention to the environmental impacts of pursuing our scientific endeavours in a ‘business-as-usual’ fashion and, moreover, highlights actions that we can take to reduce significantly these impacts. In many cases these involve straightforward changes to behaviour and practice that will yield benefits almost immediately. In other cases more effort will be required and the benefits may be realised later. The point is: we owe it to ourselves to take action, and we can start now. This report is timely and it contains many constructive recommendations; the findings are widely applicable within the broader scientific community, and well beyond.

Philip Burrows
Professor of Physics, University of Oxford
Director, the John Adams Institute for Accelerator Science

In the context of the climate crisis, the scientific community is part of the solution — through research, teaching and evidence-based policy advice. However — and this aspect has traditionally been much less in focus — the scientific community is also part of the problem, through the emissions that it produces through its own operations. This report illustrates starkly, how large that problem is: for some researchers, emissions caused by their work are not just somewhat higher than the current average global per-capita emissions or the per-capita budget to 2050, they are roughly an order of magnitude higher (see Fig. 1.4, p. 17). In the face of such data, inaction can cost the HECAP+ community i) the credibility and trust it enjoys both from policy-makers and society at large, ii) the enthusiasm for HECAP+ topics that turns young students (many of whom care passionately about solving the climate crises) into next generation’s researchers and iii) even its research freedom, because it is likely that societal pressure will increase as the climate crisis progresses and policy makers will ultimately step in to regulate carbon-intensive sectors much more strictly.

Yet, there is ground for hope. As the report illustrates, there
are already best practise examples that others in the HECAP+ community can learn from. Beyond the existing examples, the report provides actionable recommendations at three critical levels: the level of the individual, the level of research groups and the level of institutions. These three levels are necessary to achieve a change in culture towards a climate sustainable research community. Such a change in culture will happen, if individual behaviours and framework conditions (often set at the institutional level) that determine norms and incentives, change. The recommendations in this report provide first steps that the HECAP+ community can take to achieve this cultural change. Everyone in the community should read about, reflect on and, wherever possible, implement such steps.

Prof. Dr. Astrid Eichhorn
Professor in Theoretical Physics at the University of Southern Denmark
Chair of the ALLEA (European Federation of Academies) Working Group on Climate Sustainability in the Academic System

All of us have roles to play in combating the climate crisis that is bearing down upon us and the generations to come. Some of these roles are individual, such as our personal lifestyle choices, whereas others are collective, linked to our activities in society. As scientists studying fundamental physical laws, astroparticle physics and cosmology, our activities burden us with particular responsibilities. For example, the scales of our research facilities imply that we consume orders of magnitude more resources than is sustainable for the bulk of humanity, so we must strive to research as efficiently as possible. This implies minimising the wall-plug power and other resources consumed by our accelerators, experiments and data analyses. Moreover, the international nature of our research teams implies that we travel more than most, so we should strive to travel as sustainably as possible, e.g., by train, and as little as possible, e.g., by using teleconferencing tools such as Zoom or Teams. On the other hand, our research can provide humanity with valuable tools for living more sustainably. For example, the World-Wide Web, which CERN placed in the public domain 30 years ago, has enabled information to be shared and the planet’s business to be conducted more efficiently and therefore sustainably. Moreover, instruments that we develop can provide tools for monitoring and possibly mitigating the effects of
Climate change is the biggest challenge that humanity is facing today, and science is called on to help society in identifying measures to avert the environmental catastrophe that looms over our future. While science can provide solutions, we must recognise that scientific research is also part of the problem: our projects, infrastructures, computing facilities and work habits are energy-intensive and waste producers. More than ever, it is mandatory for scientists today to assess carefully the environmental impact of their activities and prove to society that even the most advanced scientific projects can be carried out in environmentally sustainable ways. This document lucidly presents the challenges, substantiating them with facts and data, and paves the way towards realistic and effective solutions. It testifies to the unrelenting commitment to societal and environmental problems deeply felt within the scientific community.

Gian Francesco Giudice
Head of the CERN Department for Theoretical Physics

In the past century the ever increasing resource demands of humans have a devastating impact on the climate of our planet. The resulting heat waves, droughts, strong rain falls, violent storms, melting ice and rising sea levels are posing an existential threat to many people world-wide already today, and even more in the future. This situation demands action from all of us individually, and as groups and institutions, to do whatever we can to reduce (or ideally eliminate) the emission of CO$_2$ (equivalent) gases, and more generally to preserve the resources of the planet. This report illustrates
well that scientists working in the fields of high energy physics, cosmology, astroparticle physics, hadron and nuclear physics are using on average more resources than what will be acceptable, and action is needed immediately. Many recommendations are proposed for individuals, groups and/or institutions. Some are rather easy while others are challenging and require core habits to change. Given the very international nature of the research performed in these fields, there is a large potential to propagate the actions to 100s of institutions in countries of all continents and thereby increasing the impact further. I very much hope this document will help us embark on the right path.

Prof. Dr. Beate Heinemann
Director for Particle Physics at DESY, Professor of Physics at Albert-Ludwigs-Universitaet Freiburg
former Deputy Spokesperson for the ATLAS Collaboration at CERN

Many of us who study astrophysics and cosmology do so out of a sense of awe and wonder at the universe. That same sense of wonder should compel us to consider the impact of our work on our planet. We work in areas that are driven by data, and the data on climate change shows clearly how humans continue to impact the climate. This extensive report presents a summary of the ways in which our work contributes to increases in emissions of greenhouse gases, collectively through our international projects and individually through personal choices. It is a sobering look at our impact, and provides recommendations for how we can effect change collectively within our research communities, collaborations and institutions.

International collaboration drives progress in the large, complex projects that we undertake to unravel the secrets of the cosmos. These projects often involve significant infrastructure investment and require a large computing budget. On the largest scale, the report challenges us to examine how we can reduce the environmental impact of the projects as a whole. This will require from us a renewed prioritisation of energy-efficiency, and strategic thinking to balance our research needs with these time-critical actions. At an individual level, it suggests ways to reduce impact on the climate by considering how we can reduce our international travel, while considering solutions that are inclusive of all members in our
collaborations, regardless of geographic location. This will again require creativity — but I am confident that as researchers who have been trained in solving difficult problems we can rise to the challenge.

Renée Hložek
Associate Professor, Dunlap Institute and the Department of Astronomy and Astrophysics at the University of Toronto
Spokesperson-elect of the LSST Dark Energy Science Collaboration (DESC)

The challenges posed by the human-made climate crisis, the largest, most rapidly developing and pervasive threat to the natural environment and societies the world has yet experienced, are enormous. They are created by ever-growing human consumption, bolstered by rising energy production and its inefficient use and waste. This energy is predominantly generated by the massive combustion of fossil fuels, predictably leading to the greenhouse effect we are experiencing. While fossil fuels are the dominant source of greenhouse gases, direct release of these gases also contributes to global climate change. As scientists we have the responsibility to transparently expose the extent to which we we contribute to the problem, as discussed in this document, and help develop solutions. Among the biggest challenges for current experiments is the emission of greenhouse gases by detectors developed and built decades ago, in some cases using gases that were at that time thought to be environmentally-friendly alternatives to even more harmful gases. Energy efficiency throughout all our instruments, including considerations of their embodied carbon, is another important challenge. All these challenges require and receive our immediate attention. Future high-energy colliders and experiments will need to be ‘green’: they will have to rely on decarbonated energy sources and employ detector technologies that avoid the use of greenhouse gases. I am confident that our field will meet these challenges and contribute to building a sustainable future.

Dr. Andreas Hoecker
CERN Research Physicist
Spokesperson, ATLAS Collaboration
Climate change does not necessarily threaten the survival of our planet in the bigger picture of the solar system and the universe; rather, it threatens our own survival and the survival of the bio- and eco-spheres that we rely on for our subsistence in this cosmos. We have no alternative planet which will provide for us, so we better not make our current one uninhabitable. Climate research has been clear on the effects of climate change, and slowly the rising sea levels, the disappearance of glaciers, the frequency of hundred year floods, the storms, droughts, and heat waves beat the message home: climate change is happening, human action is the cause, and we better counter-act it immediately. As fellow scientists from the areas of high energy physics, cosmology, and astroparticle physics, we are trained to understand and consider scientific results in our daily work. We know how to interpret statistics and draw conclusions from data. This document is a start to take the conclusions from climate research seriously and put them into action in our own fields of research. Collecting and reflecting on available results, together with recommendations for the implementation — from easy to hard — is an important first step, but only a first step. Let’s use this document and get started in transforming our field of research into a sustainable field of research — for the benefit of our planet and our own futures. The data has been clear for a while, now is the time to act on it.

Dr. Valerie Lang
Chair of the management board of the young High Energy Physicists (yHEP) association, Germany
Researcher at the Albert-Ludwigs-Universitaet Freiburg, Germany
Member of the ATLAS Collaboration at CERN

The Intergovernmental Panel on Climate Change (IPCC) Working Group II in their Sixth Assessment Report (2022) underscored that “the science is clear. Any further delay in concerted global action [on climate change] will miss a brief and rapidly closing window to secure a liveable future”. We are also rapidly advancing towards the 2030 deadline to achieve the 17 Sustainable Development Goals: an international call to end poverty, protect the Earth and deliver peace
and prosperity for all.

This report, which calls for climate and sustainability actions within the international scientific community, is both timely and welcome. It provides clear, actionable recommendations that can contribute to the collective effort to deliver positive changes across six key areas: i) Computing, ii) Energy, iii) Food, iv) Mobility, v) Research Infrastructure and Technology and vi) Resources and Waste. Ensuring both our science and the way we live are as sustainable as possible is an incredibly important undertaking, and scientists need to lead the way, and “walk the [sustainability] talk”. The global reach of this report offers a substantial opportunity to reorient the scientific community along a more sustainable trajectory. I encourage all who read it to commit to delivering its aspirations and best practices.

Prof. Dr. Lindsay C. Stringer
Professor in Environment and Development at the University of York, UK
Director of the York Environmental Sustainability Institute, University of York, UK
IPCC Scientist (Working Group II)
Environmental sustainability in basic research

Executive Summary

Humanity’s impact upon the world’s climate and ecosystems is now as unequivocal as it is extreme [3]. Averting this climate catastrophe must be a critical concern for all global citizens at this pivotal time in world history.

High Energy Physics, Cosmology, Astroparticle Physics, and Hadron and Nuclear Physics (HECAP+) research has direct impacts on the environment. Our research infrastructure, including accelerators, detectors, telescopes and computing resources, requires enormous power generation and, in many cases, contributes directly to greenhouse gas (GHG) emissions. Our work practices give rise to additional emissions, e.g., from procurement, business travel and commuting, and our industry generates various forms of waste that are harmful to the environment.

As scientists working in HECAP+ and related disciplines, our responsibilities to limit and mitigate our impact on the world’s climate and ecosystems are manifold. Our opportunities and training have given us the science capital to appreciate the evidence that has been collated over many years by climate and environmental science. We must use our unique and privileged platform to impel positive changes in, as well as educate and advocate on, environmental sustainability and the connected issues of social justice. Moreover, as a community focused on basic scientific research, we should be no less accountable for our impacts on the world’s climate and ecosystems than any other industry, and we should anticipate that our activities will come under increasing scrutiny from the public, governments and funders. We have moral and pragmatic obligations to act.

This document follows the holistic approach taken by several HECAP+ institutions in their annual environmental reports (see, e.g., Refs. [1, 2]) in assessing the environmental impacts of HECAP+ research across six areas: computing, energy, food, mobility, research infrastructure and technology, and resources and waste, also within the larger context of global emissions. Specific recommendations are made for each of these areas, but the overarching message is simple:

Assessing, reporting on, defining targets for, and undertaking coordinated efforts to limit our negative impacts on the world’s climate and ecosystems must become an integral part of how we plan and undertake all aspects of our research.
This requires urgent action at an individual level, at a group level (including research groups, collaborations and organising committees), and at an institutional level (including universities, research institutes, funding agencies, and professional societies). Moreover, it requires systematic positive changes in everything from our day-to-day activities and the ways we interact as a global community through to the design and running of the ‘big science’ infrastructure on which HECAP+ research depends.

It should be emphasised that the reduction of GHG emissions or other environmental impacts from any source identified in this report should be considered a priority by the community, whatever the comparative scale of these impacts. Carbon offsetting via legitimate providers (see Ref. [4]) should be seen as a last resort, used only once all other options for reducing the CO$_2$ equivalent (CO$_2$e) emissions have been exhausted and to offset any residual CO$_2$e output.

We urge all members of the HECAP+ and related communities to take individual actions and push for group- and institution-level changes that:

- Establish community-wide formal and coordinated efforts to assess and improve the environmental sustainability of basic research, which calls for standardised reporting and data sharing.

- Consider the environmental cost of computational infrastructure and algorithms in decision making and prioritise the development of common and reusable software solutions across HECAP+.

- Prioritise the use of sustainable and renewable energy to power our workspaces and research infrastructure; increase their energy efficiency and recovery, and energy storage capacity.

- Move towards plant-based catering at conferences and in cafeterias, immediately reducing the provision of carbon-intensive foods, such as ruminant meats and dairy products.

- Prioritise environmentally sustainable modes of transport for commuting where possible.

- Prioritise responsible business travel that balances in-person and online meetings, acknowledges the benefits of virtual and hybrid meetings for inclusivity, and considers the disproportionate impact of changes to travel culture on different groups, e.g., early career researchers and those who are...
geographically isolated.

- Mandate comprehensive life-cycle analysis for all proposed research infrastructure projects that critically assesses the environmental impact of all project stages, including design and approval, construction, commissioning, operation, maintenance, decommissioning, and removal.

- Prioritize environmentally- and socially-sustainable sourcing of raw materials for experiments and infrastructure.

- Propagate and expand the culture of “reduce, reuse, repair, recycle”, including the implementation of life-cycle awareness and end-of-life planning for hardware.

- Educate and advocate on issues of environmental sustainability and social justice, and engage more broadly with policy makers to push for wider change, e.g., the improvement and decarbonization of local transport infrastructure.
Outline

The aims of this document are:

- To improve awareness of the impact that high energy physics, cosmology and astroparticle physics, and hadron and nuclear physics (HECAP+) has on the environment.
- To provide suggestions and encourage immediate action on ways that we, as a community, can play our part in limiting further degradation of the world's climate and ecosystems.
- To provide impetus for ongoing and collective discussions of how we can make positive changes to our community's work practices, in terms of environmental sustainability and for the issues of social justice from which climate change and environmental degradation cannot be disentangled.

The aims are not to stipulate the research that our communities should undertake, nor to debate its intrinsic value.

The discussions are divided into seven sections. Sections 2 through 7 cover the topics of Computing, Energy, Food, Mobility, Research Infrastructure and Technology, and Resources and Waste. Each of these sections contains a set of recommendations, for individuals, groups and institutions, and these are followed by longer discussions that include case studies and best practice examples, which can be read independently of the surrounding material. Collated lists of acronyms and abbreviations, best practices, case studies, and figures and tables are included at the end of this document.

Section 1, Preliminaries, begins by acknowledging the climate crisis and the environmental impacts of HECAP+ research. It provides a summary of the United Nations (UN) Sustainable Development Goals (SDGs) and how these relate to HECAP+ research, and briefly reviews similar and complementary documents.
1 Preliminaries

1.1 Introduction

The 2021 report of the Intergovernmental Panel on Climate Change (IPCC) [5] is emphatic in its statements about the current status of the climate and the damaging impact that humanity continues to have upon it [3]:

"It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred. [...] Human-induced climate change is already affecting many weather and climate extremes in every region across the globe. Evidence of observed changes in extremes such as heatwaves, heavy precipitation, droughts, and tropical cyclones, and, in particular, their attribution to human influence, has strengthened since [the Fifth Assessment Report in 2014]."

It is also clear on the consequences of further inaction [3]:

"Global surface temperature will continue to increase until at least mid-century under all emissions scenarios considered. Global warming of 1.5°C and 2°C will be exceeded during the 21st century unless deep reductions in CO₂ and other greenhouse gas emissions occur in the coming decades. [...] Many changes in the climate system become larger in direct relation to increasing global warming. They include increases in the frequency and intensity of hot extremes, marine heatwaves, heavy precipitation, and, in some regions, agricultural and ecological droughts; an increase in the proportion of intense tropical cyclones; and reductions in Arctic sea ice, snow cover and permafrost."

Net global CO₂e emissions must be halved before 2030 to fulfill the Paris Climate Agreement. Without this, we are unlikely to meet the target of limiting global warming to 1.5°C in order to avoid fatal tipping points in the global biosphere (see Figure 1.1) [6]. Pledged policy changes by nations party to the Paris Agreement, known as Nationally Determined Contributions, are insufficiently far-reaching, and “make it likely that warming will exceed 1.5° during the 21st century” [7] (original emphasis). Demand-side mitigation, including changes in infrastructure use and social and behavioural practices, can reduce global GHG emissions in end-use sectors by 40-70% by 2050 [8].
Environmental sustainability in basic research

Figure 1.1: According to the IPCC, the global net CO$_2$ emissions have to come down to zero to limit global warming. To avoid irreversible tipping points, mitigation pathways should limit warming to 1.5°C, which requires deep, rapid and sustained emissions reductions. Pledged policy changes announced up until October 2021 by nations party to the Paris Climate Agreement are insufficient to meet this goal. Figure excerpted from the IPCC 2023 Synthesis Report, Ref. [7].

Figure 1.2: Share of cumulative emissions from 1990 to 2015 and use of the global carbon budget for 1.5°C linked to consumption by different global income groups. Figure reproduced from Ref. [9] with the permission of Oxfam.

Oxfam House, John Smith Drive, Cowley, Oxford OX4 2JY, UK, https://www.oxfam.org.uk/. Oxfam does not necessarily endorse any text or activities that accompany the materials.
Figure 1.3: Distribution of 2016 global GHG emissions by sector, compared with CERN emissions for 2019, during LHC shutdown. Data are taken from Ref. [11] and CERN Environmental Reports [1, 12, 13].

Oxfam’s recent publication "Confronting carbon inequality" [9] notes a strong correlation between GHG emissions and income level, with the world’s wealthiest 10% accounting for over half of cumulative global emissions (see Figure 1.2 for infographic). This income bracket, corresponding to an average annual income of over €34,000, includes many HECAP+ physicists, and was identified by the IPCC as having “the greatest potential for emissions reductions, e.g., as citizens, investors, consumers, role models, and professionals” [8]. See Inset 1 for a summary of individual climate actions ranked by impact, based on Ref. [10].

Figure 1.3 presents a breakdown of 2016 global GHG emissions by sector, with the emissions at the European Organization for Nuclear Research (CERN) for 2019, during the Large Hadron Collider (LHC) shutdown, shown as a proxy for research emissions. CERN, like other HECAP+ institutions, categorises its emissions by scope rather than sector, making a direct comparison difficult. Instead, we consider total per-capita emissions, dividing CERN’s emissions equally amongst its seventeen thousand Users (scientists involved in CERN-based research), to obtain roughly 15 tCO₂e per researcher per annum, or twice the global average of 6.3 tCO₂e. Note that this does not include personal household emissions for researchers, which may exceed their workplace emissions. It also incorrectly assigns some emissions due to CERN’s smaller cohort of direct personnel, e.g., due to CERN-funded travel or personal computing equipment, to its entire User base. For a fairer accounting, see Figure 1.4. This chart attributes reported work-related emissions in each

2Note that direct and indirect emissions more than double when the LHC is operational [1].
Environmental sustainability in basic research

Figure 1.4: Reported workplace GHG emissions, distributed among researchers at five different HECAP+ institutions, with the global per-capita average, and remaining carbon "budget" to stay within the Paris Climate Accord limit of 1.5°C of warming shown for comparison. CERN data for 2019 is taken from Refs. [1, 12, 13, 16], MPIA data for 2019 from Ref. [17], ETHZ DPhys data from 2018 taken from Ref. [18], Nikhef data from 2019 from Ref. [19], and Fermilab (FNAL) data from Ref. [2]. Scope 3 estimates are incomplete for all but CERN. To estimate emissions per researcher, each individual emissions category was divided by the nominal number of users for that resource, see Appendix A for details.

It is nevertheless evident that work-related emissions for many of HECAP+ researchers far exceed our remaining budget to stay within 1.5°C of warming [3].

These work-related emissions are due to choices we make, as individuals, collaborations, or institutions. They could be a direct consequence of HECAP+ research, such as the choice of detector design; computing setup or software pipeline for simulation and analysis; or how we collaborate or communicate the results of our work. Alternatively they could be peripherally related to the sector to the ‘true’ consumers of each resource, for researchers at CERN as well as four other HECAP+ institutions, the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, the Department of Physics (DPhys) at ETH Zürich, Nikhef in the Netherlands, and Fermilab in Chicago, USA (FNAL). For raw data and details of underlying methodology, see Appendix A. Note that these institutions are somewhat self-selected, counting among the minority that have published quantitative estimates of their environmental footprint. Since CERN is the only institution on this list that attempts a full accounting of its Scope 3 emissions, the numbers in this chart should be taken as indicative only, and caution should be employed in making comparisons across institutions on this basis. It is nevertheless evident that work-related emissions for many of HECAP+ researchers far exceed our remaining budget to stay within 1.5°C of warming [3].

CERN procurement data were estimated with a spend-based method [14] using the ecoinvent database [15]. The results therefore have a large margin of error and should be interpreted with care.

The per-capita budget is computed using an emissions budget of 420 GtCO$_2$e and an average world population of 8.8 billion.
science we do: e.g., how we commute between our home and workplace, or the food we consume while at work; or how our offices are powered, heated and ventilated. Historically, many of these choices have been made prioritising cost or convenience over environmental and social impact. However, the rapid and systemic societal change needed to keep to our climate change goals requires system-wide engagement at all levels of academia. We can impel positive change throughout the academic research system by re-assessing these choices and how central they are to our primary function as scientists.

This process has already begun. Universities and other institutions are including sustainability in buildings planning (see Best Practice 1.1) and engaging with voluntary assessments of the environmental sustainability of their research facilities (see e.g., Refs. [1, 2, 17–19]). Examples focused on the environmental sustainability of laboratories include France's Labos1point5 (see Best Practice 6.2) and University College London's Laboratory Efficiency Assessment Framework (LEAF) initiative [20, 21], a standard being adopted across an increasing number of universities [22]. The LEAF initiative, which awards three levels of certification to participating laboratories, is structured around online tools that promote best practice, and aid calculations of impact and reporting, as well as additional resources and training opportunities for staff and students.

Best Practice 1.1: Nikhef renovation and sustainability plan

Nikhef is the Dutch National Institute for Subatomic Physics in the Netherlands. It is both a consortium of universities and an institution with a building in Amsterdam. The total tCO$_2$e footprint of Nikhef was 1,082 tCO$_2$e in 2019, a three quarters of which is due to flying to conferences and laboratories, and 15% is due to heating the building with natural gas [19]. The building is undergoing a major renovation in 2021–2023, which will remove the need for gas for heating. Instead, the heat from the nearby data centre will be used, in addition to better thermal insulation of the building.

The Nikhef sustainability roadmap [19] covers all sources of direct and indirect carbon emissions. For instance, by 2030, air travel should be reduced by 50% and daily commuting should be climate-neutral. Intermediate targets for 2025 are also set and yearly emissions will be monitored and reported.

aWe report the 2019 numbers, since the 2020 numbers may be unrepresentative due to the impact of the COVID-19 pandemic.
Inset 1: Personal emissions

Figure 1.5: Emissions reduction from individual actions. Black lines correspond to individual developed nations studied, the mean over which is shown as a coloured bar. Note that these numbers are based on average current emissions in developed countries, neglecting the effects of climate policy. The break in the left-most bar distinguishes between the emissions due to direct offspring and integrated emissions over all generations of descendants. Moreover, the integrated estimate assumes emissions per capita that are constant in time. See the accompanying text and footnote for a more detailed exposition of the underlying assumptions and leading systematic uncertainties. Figure reused from Ref. [10] under the terms of the Creative Commons Attribution 3.0 Unported (CC-BY 3.0) License.

Figure 1.5 shows the conclusions of a recent meta-study from Lund University [10], in which individual climate actions were ordered by impact. Note that the authors assume “average conditions in developed countries”, so miss the substantial differences between emissions levels in developing and developed nations. They also neglect the effects of climate policy. For one estimate of how national climate policies might modify the ordering, see Ref. [23]. This figure highlights the disconnect between the moderate-impact measures (right-most five bars) that consumers are commonly encouraged to take, and the high-impact measures (left-most seven bars) that pertain to more complex and nuanced issues. A full discussion of these issues is beyond the scope of this document.

The left-most bar, the climate cost of having an additional child, relies on the assumption that global emissions per capita remain frozen at their 2005 value. The 2009 study from which this estimate was taken [24] also quotes results assuming two alternative emissions scenarios considered in the 2007 IPCC report: an ‘optimistic’ scenario, in which emissions per capita decrease linearly to 0.5 tCO$_2$e by 2100, and a ‘pessimistic’ one, in which they increase linearly...
to 150% of their 2005 value of 4.3 tCO$_2$e. The systematic uncertainty in the result due to this choice is huge, with the estimated cost of having an additional child ranging from 4.6 tCO$_2$e in the optimistic scenario, to 81 tCO$_2$e in the pessimistic one. The lower and upper limits of this range were obtained by dividing the lifetime emissions per child in each case by the average human lifespan, as reported in Ref. [25], in the developed country in question. This still raises the question of how responsibility for the emissions of future generations should be allocated, given that children are essential to the functioning of our society and institutions.
1.2 Previous and Parallel Initiatives

This document is focused on environmental sustainability and associated social justice issues of particular relevance to the activities of HECAP+. It is important to acknowledge the attention that these topics are rightly being given across our communities. This includes, e.g., in conference plenary talks and in parallel tracks devoted to sustainability, and equity, equality, diversity, inclusivity and accessibility. This section provides a brief review of other documents with similar and complementary focuses on environmental and wider social responsibilities.

1.2.1 ALLEA, Towards Climate Sustainability of the Academic System in Europe and Beyond

The All European Academies (ALLEA) Working Group on Climate Sustainability in the Academic System published a report in May 2022 [26], the aim of which is "to assess current practices and to critically examine current and proposed measures." The document urges stakeholders — either individual (researchers and students) or structural (universities, funding bodies, conference organisers, ranking agencies, and policy makers) — to know their roles and responsibilities toward a climate-sustainable academic system. After summarizing available data on GHG emissions from various stakeholders and reviewing the current practices aimed at reducing those emissions, the report outlines recommendations for individual and group stakeholders. Dimensions of social justice and equity are among the principles underlying all recommendations, as well as the opportunity for the academic system to be a role model in the matter. While all group stakeholders are advised to embed sustainability in their strategies, individual ones differ: students and academic members are encouraged to hold university management accountable, to demand divestment and to generate awareness. The importance of the development of an evidence base is emphasised, along with mix-and-match approaches to meeting formats. Finally, stakeholders are pushed to allocate funding to the decarbonization of the academic system.

1.2.2 Snowmass Contribution, Climate Impacts of Particle Physics

The report "Climate impacts of particle physics" [27], submitted to the proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021) focuses on facility construction, detector gases, computing, and GHG emissions from particle physics laboratories. The report highlights two key motivations for addressing the ecological and climate impacts of particle physics: (i) that the particle physics community has a moral obligation to do
so and (ii) that its professional activities will be under increasing scrutiny from a number of stakeholders. The latter means that the community will be under increasing pressure to justify its carbon emissions against its relative size, compared to other industries, and its societal benefits.

As a concrete example, the report focuses on the Future Circular Collider (FCC) — the proposed 100 TeV electron-positron (and later hadron) collider. The authors estimate that the construction of the roughly 100 km circumference tunnel alone would lead to CO\textsubscript{2} emissions at the level of a few hundred kilotons, several times more than other large US building projects. This corresponds to "per physicist" emissions 80 times larger than their estimated 1.1 t\textsubscript{CO\textsubscript{2}} per capita per year limit needed to keep global warming to less that 1.5°C. The authors emphasise the significant impact of the GHGs used in particle physics detectors and for cooling, which can have warming potential that exceeds that of CO\textsubscript{2} by as much as four orders of magnitude (in the case of SF\textsubscript{6}). The report then highlights a number of avenues for reducing the GHG emissions due to the electricity consumption of computing, which is pivotal to running and exploiting such facilities. It also discusses the additional emissions due to collaborative research activities, with a particular emphasis on taking careful steps to reduce air travel that capitalise on potential benefits for social justice while minimising unintended negative consequences for members of the community.

The report’s recommendations stress the need for reporting on planned emissions and energy usage for new facilities; standardised reporting of emissions across the sector, and community-wide engagement to tackle the negative climate impacts of particle physics research through dedicated research time.

1.2.3 Recommendations by the yHEP association in Germany

The young High Energy Physicists (yHEP) association in Germany published the "yHEP recommendations on improvement of environmental sustainability in science" [28] and its Addendum [29] in December 2020 and 2021, respectively. The documents, which were the result of proposals from the yHEP community, including HECAP, hadron and nuclear, and accelerator physicists, contain ideas for improving the environmental sustainability of basic research. They take a qualitative approach on a broad range of topics, including, but not limited to, travel, conferences, computing and infrastructure, resource management and financing, and green energy.
1.3 Impelling Positive Change

The aim of this document is to provide as comprehensive a discussion as practicable of the various impacts of HECAP+ research, from our day-to-day activities through to the large infrastructure projects on which our science depends. The discussions presented here have much in common with those of the documents described in Section 1.2. This document is, however, intended to have broad scope and, through case studies and best practice, to illustrate potential actions that can be implemented at individual, group and institutional levels to limit the impacts of HECAP+ research on the world's climate and ecosystems.

However, if the HECAP+ community is to succeed in improving the sustainability of its working practices, then the environment and related issues of social justice must be recognised as integral parts of the planning and management of our research activities. With this in mind, we collect below a list of recommendations for structural changes to the organisation of our community, our training and our professional development.

These recommendations complement those listed in the discussions of specific sources of environmental impacts of HECAP+ research on which the bulk of this document focuses. Together, these provide concrete suggestions of ways in which the HECAP+ community can act to reduce its negative climate and ecological impacts, and address issues of social justice in line with the United Nations Sustainability Goals, discussed in the next subsection.
Recommendations — Impelling Positive Change

Individual actions:

- Consider the environmental impact of work practices.
- Be proactive in seeking best practice.
- Make and model positive change in research activities.
- Drive positive group and institutional actions.

Further group actions:

- Include critical assessment of the environmental impact of all activities during planning stages.
- Monitor, assess, report on and set targets in relation to the environmental impacts of research activities.
- Drive institutional actions, and encourage, support and incentivise individual actions, e.g., through training.

Further institutional actions:

- Require funding applications to outline plans for monitoring, reporting and minimising adverse environmental impacts, and for ensuring that research is undertaken in line with principles of social justice.
- Allow flexibility in policies and procedures e.g., budget allocation, that enable environmentally sustainable choices to be made.
- Ensure that degree programmes include a focus on global citizenship, encompassing environmental sustainability and associated social justice implications.
- Acknowledge focus on environmental sustainability and social justice in the accreditation of degrees by governments and professional bodies.
- Encourage, support and incentivise individual and group actions, e.g., by considering them in professional development and appraisal processes.
1.4 United Nations Sustainable Development Goals

As a global research community, HECAP+ has an impact on society all over the world. We contribute to basic scientific knowledge, drive innovation and promote international collaboration. Our institutions are large employers, large consumers of goods and services, and a key resource in the training and development of national skills bases. This places our institutions in a position to influence policy decisions, drive investment in local infrastructure, and leverage wider improvements to social and environmental standards. For these reasons, the HECAP+ community is in a strong position to support the UN Sustainable Development Goals (SDGs), summarised in Figure 1.6.

The topics discussed in this document are meant to support a multiplicity of these goals, and we aim to signpost the influence of our work in all aspects. The goals are listed below, with examples of how each is impacted by the HECAP+ research community and its work. The SDGs are defined in UN resolution A/RES/70/1 in detail [31]. It is impossible to cover all aspects in this document, but the manifold impact of the HECAP+ community on sustainable development is clear from this non-exhaustive list.
Goal 1: No poverty — End poverty in all its forms everywhere

- The contractual and payment standards in employment contracts of institutes and collaborations influence their employees' lives.
- The terms of contract with external companies influence the working and living conditions of their employees.

2 Zero hunger: End hunger, achieve food security and improved nutrition and promote sustainable agriculture

- The food consumed at institutes and events has an effect on the behaviour of the food market/industry from which it is purchased.

3 Good health and well-being: Ensure healthy lives and promote well-being for all at all ages

- HECAP+ research helps to develop medical diagnostics and treatments, e.g., for cancer.
- The working culture practised every day has an impact on the mental health of ourselves and co-workers.
- The design of experimental setups has an effect on (work) safety issues.
- Food served and consumed at institutes and events has an impact on the health and well-being of the consumers.

4 Quality education: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all

- Research develops and uses scientific methods to establish a general body of knowledge that can be passed on in educational settings.
- Researchers are often teachers for their respective field and have an effect on the teaching culture.
- Researchers and institutes, through their conduct and integrity, have an impact on the credibility of science in society.
- Transparent reporting on efforts towards more sustainable research has a positive impact on the credibility of scientists, and helps avoid greenwashing.
5 Gender equality: Achieve gender equality and empower all women and girls
- As an historically male-dominated field, HECAP+ should strive to act for the visibility, acceptance and representative participation of all genders.

6 Clean water and sanitation: Ensure availability and sustainable management of water and sanitation for all
- Our research requires the use of water for various purposes (heating, cooling, cleaning, sanitation, food production and preparation, etc.). Its sources are affected by our needs and behaviour.
- HECAP+ research creates waste water. The treatment of this has an impact on the water quality in the linked aquatic ecosystems.
- The behaviour and lifestyle choices of our community in professional and private life have an impact on the water needs in the surrounding and indirectly linked area.

7 Affordable and clean energy: Ensure access to affordable, reliable, sustainable and modern energy for all
- The sources of energy planned and used for institutes, accelerators and experiments have an environmental impact on a global level.
- The high consumption and the resulting financial impact of research facilities have an impact on the energy market.

8 Decent work and economic growth: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all
- The terms of employment contracts and working culture in HECAP+ research influence employees’ living conditions.
9 Industry, innovation and infrastructure: Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

- Innovation is at the core of HECAP+ research.
- Institutes influence the local infrastructures on which they rely and construct infrastructure for research.
- Industry and HECAP+ research are linked as knowledge and products are transferred. This transfer can be shaped actively.

10 Reduced inequalities: Reduce inequality within and among countries

- Research facilities that span multiple nations have the ability to impact the inequalities between the involved countries. They can also set examples for countries which are not (yet) involved.

11 Sustainable cities and communities: Make cities and human settlements inclusive, safe, resilient, and sustainable

- The campuses of research facilities have an impact on the cities and neighbourhoods in which they are built.
- The behaviour and lifestyle choices of our community in professional and private life have an impact on our local communities.

12 Responsible consumption and production: Ensure sustainable consumption and production patterns

- The facilities, accelerators, machines, and experiments we build use up resources and energy in their design, construction, overall lifetime (e.g., maintenance) and disposal.
- The disposal of obsolete equipment and other waste generated by the work we do has an impact on our environment.
- Our daily choices on consumption have a wider effect on the systems which produce them, e.g., food and travel.
13 Climate action: Take urgent action to combat climate change and its impacts*5

- The emission of various gases by HECAP+ research has an impact on the Earth's climate.
- The sources of the electrical and thermal energy used by HECAP+ facilities impact the global climate.
- The behaviour and lifestyle choices (eating, travel, product consumption) of our community in professional and private life have an impact on the global climate.

14 Life below water: Conserve and sustainably use the oceans, seas and marine resources for sustainable development

- Some of the HECAP+ experiments and facilities are built within or close to aquatic ecosystems, e.g., Antarctica, and therefore affect these both directly and indirectly.
- Many goods, products and experiments used in research are travelling the oceans prior to use.
- The industries that produce the goods that we consume use water and produce waste products, some of which ends up in the ocean.
- The behaviour and lifestyle choices of our community in professional and private life have an impact on the oceans, through the demand for clean water, and the production of waste water and residues, including microplastics.

5Footnote by the UN: *Acknowledging that the United Nations Framework Convention on Climate Change is the primary international, intergovernmental forum for negotiating the global response to climate change.
15 Life on land: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss

- Campuses are ecosystems.
- Expanding the campuses of research institutes can have an impact on surrounding ecosystems.
- Our consumption has direct (e.g., deforestation for agriculture and construction) and indirect (e.g., our emissions give rise to more frequent extreme weather events) effects on land use, damaging ecosystems.
- The behaviour and lifestyle choices of our community in professional and private life have an impact on the land and its ecosystems, because of the extraction of resources and the production of waste or residues.

16 Peace, justice and strong institutions: Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels

- HECAP+ is an international field demonstrating harmonious partnership in working towards common goals, and can serve as a model for peaceful international collaboration.
- HECAP+ is part of society, and it is composed of institutions that can help shape the societies and politics within which they are embedded.
- Large-scale HECAP+ projects can have a positive impact on industrial and political partnerships.
- Transparent reporting on efforts towards more sustainable research has a positive impact on the credibility of scientists, and helps avoid greenwashing.
17 Partnership for the Goals: Strengthen the means of implementation and revitalize the global partnership for sustainable development

- As an international community based on research and a driver for innovation, we can influence our partners and work together to strengthen a sustainable society around the globe.
2 Computing

Computing represents an integral part of basic research, being used for theoretical modelling, simulation (including lattice simulation), and data analysis. With increasing data sets and demands for accuracy, computing resource consumption is expected to rise. This poses concerns in the context of climate sustainability. Within HECAP+, e.g., the High-Luminosity phase of the Large Hadron Collider (HL-LHC), predicted to be operational from 2026, is expected to rely on 50 to 100 times the computing capacity needed for the Large Hadron Collider (LHC), with data storage requirements reaching exabytes [32]. At the same time, some lattice quantum chromodynamics (QCD) calculations, applied, e.g., to studying heavy quark decays and anomalous magnetic moments, can be too expensive to pursue, even if approximately 10% of open-science super-computing in the United States is devoted to such studies [33]. Up to 88% of the electricity consumption of an astronomy researcher at MPIA, shown in Figure 1.4, is due to (super)computing [17], and CERN's (now defunct) data centre in Hungary is responsible for a third of its electricity emissions when the LHC is not running [1].

HECAP+ research infrastructure ranges from local and portable computing, to high-performance computing (HPC) and high-throughput computing (HTC) in centralised computing centres that — depending on the application — deal with large volumes of experimental data. As an international community, we also rely on communication technologies and the ability to move these large volumes of data around the globe. The infrastructure we use to do so, comprising hardware, the data centres within which the hardware is housed, and cloud computing resources used for data storage, contributes to our community's energy consumption and the waste that our research generates. Furthermore, the energy efficiency of hardware is ultimately limited by the efficiency of the computer programmes that run on this hardware, making the GHG emissions of HECAP+ researchers dependent upon the choice of software architecture.

6 The total emissions due to electricity use of a CERN researcher during LHC shutdown is about a third that of a FNAL researcher (see Appendix A for details). CERN, however, uses mainly the French grid with its low-carbon energy, reducing its computing carbon footprint. For further discussion, see Section 3.

7 Generally, synchronization requirements of large parallel HPC applications place substantial constraints on runtime scheduling choices and use of power-saving functionalities. HTC applications, on the other hand, can be naturally run in parallel, but are constrained by memory consumption, and data access and transfer.
This chapter covers sustainability in procurement, and extending and optimising the life-cycle of computing equipment in Section 2.1, choice and optimisation of software in Section 2.2, and energy savings in data centres in Section 2.3. For a full discussion of sustainable sourcing in a broader context, as well as information on E-waste and its impact, see Section 7. A brief explanation of the life-cycle analysis used to estimate the cradle-to-grave environmental impact of infrastructure and technology can be found in Section 6. For other aspects of energy use, see Section 3.
Recommendations — Computing

Individual actions:

- Make sustainable personal computing choices by considering the necessity of hardware upgrades, the repurposing of hardware, and the environmental credentials of suppliers and their products.
- Assess and improve the efficiency and portability of codes by considering, e.g., the required resolutions and accuracy.
- Assess and optimise data transmission and storage needs.
- Follow best practice in open-access data publishing, prioritising reproducibility and limiting repeat processing.
- Read the section on E-waste (Section 7).

Further group actions:

- Right-size IT requirements and optimise hardware lifecycles.
- Schedule queueing systems with environmental sustainability in mind, so as to maximise the use of renewables, accounting for the geographical location of servers/data centres.

Further institutional actions:

- Ensure that environmental sustainability is a core consideration when designing and choosing sites for large computing infrastructure, such as data centres, including, e.g., the availability of renewables, the efficiency of cooling systems and the reuse of waste heat.
- Proceduralise the repair, upgrade and repurposing of existing computing, the de-inventorising of personal equipment for leaving personnel or for donation, and the responsible recycling of retired hardware.
- Select cloud computing services for their carbon emission mitigation policies.

Some of the above recommendations are based on those made by Jan Rybizki [34].
2.1 Hardware

When considering the future of sustainability in HECAP+, the hardware aspect of computing is of great concern. Hardware is both energy- and resource-consuming. The manufacture, transport, energy consumption, and disposal of each piece of hardware contribute substantially to the environmental footprint of the HPC that HECAP+ relies on to analyse large swathes of data.

Manufacture is the largest source of hardware GHG emissions, with primarily fossil-fuel-powered manufacturing chains contributing as much as 80–85% of lifetime emissions of a personal computing device [35, 36]. Moreover, production is notoriously resource-intensive [35], with the mining of the necessary metals and ‘conflict’ minerals responsible for a number of negative environmental and social effects. Improper disposal of substances found in computing equipment is also linked to environmental hazards and a variety of other risks. For an in-depth discussion, see Section 7.

One way to mitigate the impact due to production is by purchasing modular equipment, which allows for easy upgrades and repurposing of hardware. In fact, the extension of hardware lifetime has been increasingly demonstrated to have major benefits over upgrading to more efficient technology. A study by the University of Edinburgh Department for Social Responsibility and Sustainability [37] found that simply using 174 computer monitors for six years instead of four saved 33 tCO$_2$e, which, when incorporated into standard practice, would not only reduce purchasing costs, but would result in annual GHG savings of 380 tCO$_2$e. It is also crucial that institutions be able and willing to support repairs. This applies in particular to personal equipment, e.g., laptops, which come with additional peripherals such as display, keyboard, and housing, as compared with HPC units in data centres.

Furthermore, prioritising suppliers that implement sustainable sourcing, including recovery of secondary materials, and manufacturing methods would partially mitigate the resource burden, as would enabling circularity and appropriate E-waste recycling. As one example, TCO certification [38] is the world-leading sustainability certification for IT products, such as those supplied by Lenovo, Dell, or Acer. TCO-certified compliance is independently verified both pre- and post-certification. TCO certification also covers data centre products, which could be given preference over uncertified ones for cluster computing. For more information on sustainable procurement, including some hallmarks of sustainability in raw materials supply chains, see Section 7.1. For further discussion of E-waste, see Section 7.2.
A secondary source of hardware emissions is energy consumption during its use [35], with the majority coming from processors, memory, and runtime of jobs. Processor upgrades and the optimisation of memory type can greatly reduce energy consumption. See Case Study 6.3 for details of energy-efficient hardware purchase at the Large Hadron Collider beauty experiment (LHCb).

It is important to ensure ‘energy proportionality’ in hardware use, i.e., that energy consumption is proportional to computing performance over the full range of applications [39]. Often, hardware designed to be most efficient at maximum performance load in practice spends most of its time idle, or performing less intensive computations. This can be addressed by, e.g., running jobs at high utilization rate on as few servers as possible.

Implementing parallelisation within processors can also reduce the number of processors needed, and by replacing central processing units (CPU) with graphics processing units (GPU), the energy usage can be reduced. For certain tasks relevant to HECAP+ applications, other even more specialised processors are available, such as Google’s tensor processing unit (TPU) [40]. This consumes less power than its predecessors, although it suffers from poor energy proportionality: at 10% load, it consumes almost 90% of the power it would consume at 100% load [41].

However, it should always be tested whether parallelisation does reduce the overall energy usage of a task, as an increase in energy consumption per second could counteract the benefits of reduced runtime. Another aspect to take into consideration when implementing parallelisation is the particular application, and its requirements in terms of memory, scalability, and data access. Reference [42] discusses these issues in the context of the Worldwide Large Hadron Collider Computing Grid (WLCG). It also gives suggestions for power-aware software applications and scheduling that could reduce power consumption. Some of the advocated changes are software specific and are further detailed in Section 2.2. The Green500 list [43] ranks the most energy efficient high-performance computing systems. The GHG emissions of the computer centres that house them, however, depend critically on their infrastructure. This aspect is further discussed in Section 2.3.

2.2 Software

Software is integral to the work of HECAP+. It underpins how the global HECAP+ community communicates, shares data, produces papers and graphics, and acquires, manages, processes and analyses huge amounts of data from
It is therefore pivotal that the software developed and used by the HECAP+ community is efficient in order to minimise CPU hours, and to facilitate data sharing and long-term reproducibility. This requires a balance to be struck between portability and optimisation for particular architectures. While not directly linked to environmental sustainability, initiatives focused on software sustainability in HECAP+, such as the Institution for Research and Innovation in Software for High Energy Physics (IRIS-HEP) [44] and the HEP Software Foundation [45], may provide an important platform for accelerating the inclusion of environmental considerations in software development. Doing so is compatible with the FAIR principles [46] for scientific data management, that software (and data) should be Findable, Accessible, Interoperable and Reusable.

Much of the code used in HECAP+ computing relies on libraries and public codes. Experiments use general frameworks and software infrastructure provided by experts in the experiments. They can have a tremendous impact on the energy efficiency of the employed code and, in some cases, work to meet strict requirements posed by the computing environment. Decisions on the computing language employed can be crucial, with Fortran and C++ specifically suited for numerical calculations, whilst others prioritise convenience or readability over performance. Changes in processor architecture have been utilised through dedicated and collaborative efforts, leading to a factor of 2 improvement in the performance (and energy efficiency) of the reconstruction code of the ATLAS experiment at CERN [47]. Other examples of software improvement are recent changes to the software framework and architecture at LHCb (see Case Study 6.3) and improvements in a Monte Carlo (MC) generator core code, having led to an improvement in speed of a factor of 50 (see Best Practice 2.1). In the case of cosmological analyses, it has been suggested that the Likelihood Inference Neural Network Accelerator (LINNA) can lead to efficiency increases that would save $300,000 in energy costs and around 2,200 tCO₂ in first-year Rubin Observatory’s Legacy Survey of Space and Time (LSST) analyses [48].

Sustainable use of software can also be encouraged at an individual level. The energy used in a job directly correlates with the memory assigned/available for a job, so mitigation by individuals can be easily implemented through assigning the correct memory used and by optimising code [49]. Further examples of conscientious use of software include limiting resolution or precision to that which is necessary, effective testing to avoid wasted CPU hours, good practice in data retention to avoid data loss and the need to rerun analysis or simulations, and scheduling CPU hours when a higher percentage of the local energy mix is
Best Practice 2.1: Optimization of software

A targeted effort enabled by the UK-based SoftWare and InFrastructure Technology for High Energy Physics (SWIFT-HEP) [50] project recently brought together experimentalists and Monte Carlo (MC) developers to greatly improve the computational efficiency of multi-leg next to leading order calculations by focussing on two major components of general purpose MC event generators: The evaluation of parton-distribution functions along with the generation of perturbative matrix elements. A dedicated CPU profiling illustrated that for the cost-driving event samples employed by the ATLAS experiment to model irreducible Standard Model backgrounds, these components dominate the overall run time by up to 80%. Improved interpolation and caching strategies in LHAPDF [51], the main evaluation tool for parton-distribution functions used by the experiments, along with the introduction of a simplified pilot run in the MC generator Sherpa [52] for the unweighting achieves a reduction of the computing footprint by factors of around 50 for multi-leg next to leading order event generation, while maintaining the formal accuracy of the event sample [53]. The speed-up translates into a direct CPU (and hence energy) saving, paving the way towards affordable and sustainable state-of-the-art event simulation in the HL-LHC era.

2.3 Infrastructure

Even the most energy-efficient data centres are not environmentally sustainable if they are powered by carbon-based fuels [27]. However, provided energy from renewable sources is available, this can be easily addressed. Indeed, there are many advantages to doing so, owing to the flexibility of HTC Inherent fluctuations in supply of electricity from renewables can be managed using a smart queueing system that runs jobs at times where electricity has a large renewable component, or directs them to data centres where this is the case. Moreover, a carefully-managed HTC system can even help stabilise fully-renewable power grids in response to local imbalances in supply and demand: an instantaneous reduction in the CPU clock frequency by up to 60% ensures per-second grid stabilisation, and a similar technique can be employed on longer time scales, e.g., hourly, in response to changes in the carbon intensity of electricity (or equivalently, market price). For longer periods, with higher latency, this can also involve powering down nodes. The reduced work can be compensated by operating older hardware longer, but only when the electricity from renewables.
Another source of GHG emissions associated with computing is the construction and operation of the large data centres within which IT equipment is housed. Although emissions due to construction can be significant, particularly if concrete is used, our focus in the remainder of the section will be on cooling the facilities and equipment, which is responsible, on average, for almost one third of facility power use. A judicious choice of location for the centre can minimise these energy costs, by provision of a cooler external environment, or other means to cool efficiently. Proximity to a large body of water, e.g., could make water cooling an attractive option. Care must be taken, however, to ensure minimal disruption to the natural environment. Waste heat from the data centre can also be reused to heat nearby infrastructure. For examples of best practice in data centre design and construction, see Best Practice 2.2, Best Practice 2.3, and Best Practice 2.4. For more information on energy-efficient LHCb computing infrastructure, see Case Study 6.3.

Best Practice 2.2: Cooling in Swiss National Supercomputing Centre

Information taken from CSCS fact sheets [54, 55] and vetted by the organization.

The Swiss National Supercomputing Centre (CSCS) is a three-floor concrete building in Lugano that houses the “Piz Daint” supercomputer and the system used by MeteoSwiss for weather predictions, among other things. It currently operates at a Power Usage Effectiveness (PUE) rating of 1.20 at 25% of full load, with a design PUE of 1.25. At CSCS, high-efficiency cooling is achieved with a state-of-the art cooling system using the water from Lake Lugano, extracted at a depth of 45 m and a temperature of 6°C. 420 litres of this water per second are pumped to the facility over a distance of 2.8 km into large heat exchangers, where it meets and cools the water in the internal cooling circuit for the supercomputers. The resulting warmer water is then sent to a heat exchanger in a second cooling circuit, which cools the components with a lower thermal sensitivity, as well as the building itself in the summer, before being returned to the lake. The return flow of water falling back into the lake is used to produce electricity via a microturbine in the pumping station further reducing the power consumption of the pumps by 30%. Due to modular cooling and room concepts, the different parts of the facility are equipped only as necessary. Not only does this reduce the initial budgetary outlay, but it also results in increased flexibility to react to future hardware needs, while keeping the PUE...
close to its final design value from the outset.

*aPUE measures the overhead energy costs of an IT facility, and is defined as the ratio of the total power used by the facility over the energy used by the IT equipment.

Best Practice 2.3: Sustainable design for Prevessin Computing Centre (PCC), CERN

Edited contribution from Wayne Salter, IT Project Manager for the PCC.

CERN has for some time been wishing to build a second Data Centre (DC) on its Prévessin site (named the PCC) to augment the capacity being provided by its Meyrin DC, in particular in light of the increased demands from the LHC experiments in the HL-LHC era. In 2019, a project was approved to build a turn-key DC with an initial capacity for computing of 4 MW, but with the possibility to upgrade the IT capacity in two steps to 8 MW and finally to 12 MW. A Call for Tender was initiated at the end of 2019 for the design, construction and 10 year operation and maintenance of a new DC, and the result of the tender was adjudicated at the CERN Finance Committee in December 2020 in favour of a consortium led by EQUANS [56]. A contract was signed with the winning consortium in July 2021 and construction began at the beginning of 2022. The DC is expected to be operational in the final quarter of 2023. An important aspect included in the thinking for the new DC was sustainability and, in particular, energy efficiency. As such, the specification required a target PUE of 1.1, but contractually allows for a PUE of no worse than 1.15, for energy recuperation of at least 25% of the heat generated by the IT equipment and for a roof with vegetation.

When considering the increased energy efficiency compared with CERN’s existing Meyrin DC, which now has a PUE of around 1.5 after many years of efforts to bring this down, this equates to significant energy savings. Assuming the PCC running at full first phase capacity of 4 MW with a PUE of 1.1, cf. 1.5 for the current CERN Data Centre, then the annual saving in terms of electricity would be 14 GWh. Obviously, should the PCC be eventually upgraded and used at its full final capacity then the savings could be tripled, cf. with running a similar capacity with the PUE of the current Meyrin DC. It should be noted that the PUE of the current data centre is the result of many years of efforts to improve the energy efficiency, which have substantially reduced its PUE, but that further improvements would now be complex and costly.

In addition to aiming for high energy efficiency, the design of the PCC also
allows for the heat produced by the IT equipment to be recuperated and used to help power a new building heating plant that will soon be built close to the PCC to replace an existing ageing and inefficient heating plant. The specification for the PCC required the possibility to recover a minimum of 25% of the generated heat per phase, implying 1.3 MW per phase leading to a total of 3 MW once the full 12 MW configuration would be operational. However, during the design phase, it has been decided to request 3 MW already during the first phase. In the second phase, the heat recuperation will be increased to 4 MW.

During hot weather, water is sprayed on the heat exchanger elements of the dry coolers to improve their efficiency. In the original design, this water was lost, resulting in a non-insignificant water consumption over the year. However, with sustainability and environmental protection considerations in mind, it was decided to make efforts to reduce the water consumption as far as possible without impacting the efficiency of the cooling solution. As such, it was agreed with the contractor to change the design to include water re-circulation at the level of the dry coolers and hence substantially to reduce the water consumption. In the first phase, the annual water consumption is estimated to be reduced by 61% from 21,455 m3 to 8,645 m3, based on the average meteorological data for the area.

To further improve sustainability and to make the building more ecologically friendly, it was decided to request that vegetation be planted on the roof of the building, which is effectively in two halves. The first half contains the IT rooms (two per floor for three floors) and the second half is for all the technical rooms. The roof is similarly split in two. The first half is used for the dry coolers and associated technical infrastructure and hence cannot be used for vegetation, but the second half will be planted with grass covering an area of approximately 1,250 m2.

Best Practice 2.4: The Green-IT Cube at GSI/ FAIR [57]

Edited contribution from Tetyana Galatyuk.

At GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, the Green-IT Cube [57] was constructed in 2014 to host the computing systems of the FAIR particle accelerator facility under construction close to GSI, as well as numerous other scientific computing systems. It has a total capacity of 12 MW and 768 racks, distributed over 6 floors. The partial PUE, that is the PUE across some part of the data centre, of the installation reaches 1.07 at a load of less than
25%, which meets the design value. In acceptance testing at higher loads an even better partial PUE has been observed.

This became possible due to the award-winning innovative design of the Green-IT Cube, which was developed at the Frankfurt Institute of Advanced Studies by Volker Lindenstruth. The innovative design based on water cooled back-door heat exchangers allowed not only for a low PUE, but also for an advanced 3D building design, which reduced the ground print of the compact data center. At the same time, it reduced the building material needed, further reducing the environmental impact. Parts of the excess heat are used to heat office buildings on the GSI campus.

The patented design has received many innovation and data center awards and was successfully transferred into industry.

\(^a\)For a detailed explanation of partial PUE, see, e.g., Sec. VII of Ref. [58].
The operation of experimental equipment and computing facilities at large-scale research centres has a significant energy footprint. In addition, energy is required for the construction and disassembly of infrastructure, for heating and cooling buildings, and for transport of goods and people. To comply with the Paris Agreement, future facilities must be effectively climate-neutral, and this presents a significant challenge for HECAP+.

Particle collider experiments are particularly power-hungry, with the LHC at CERN being a prominent example. With its particle accelerators, detectors and extensive infrastructure, CERN consumes up to 1,300 GWh of electricity annually, of which 55% is due to LHC operations [1, 59]. CERN plans to significantly increase the scale of its installations in a push towards higher energies and intensities. Doing so responsibly will require a concerted effort to minimise power consumption and increase the energy efficiency of the infrastructure, and a careful analysis of how to source the remaining energy needs sustainably.

CERN receives most of its electricity from the French grid, which is currently characterised by a high share of low-carbon nuclear power, suppressing its electricity-related CO$_2$ emissions in comparison with other facilities (see Figure 1.4).\(^8\) However, taking into consideration the decreasing share of nuclear power in the French grid over the last 15 years, as well as the wider common European electricity market, where fossil fuels account for 37% of electricity production on average [60], the outlook is more worrying.\(^9\)

It is important to place the energy needs of HECAP+ research infrastructure within the context of the world’s necessary and rapid transition to zero-carbon energy sources. Global primary energy consumption in 2019 was approximately 160,000 TWh (equivalent to an average power consumption of 18,000 GW), around 80% of which comes from CO$_2$-emitting fossil fuels [62]. Moreover, demand is rising, primarily due to the growth and industrialisation of emerging countries. A 50% reduction of CO$_2$ emissions by 2030, as stipulated in the Paris Agreement in combination with the latest IPCC scenarios (see Figure 1.1), will

\(^8\)CERN’s annual electricity emissions range from 9,000 tCO$_2$e (LHC in shutdown) to 15,000 tCO$_2$e (LHC in operation) [1].

\(^9\)For a live visualisation of the carbon emissions of electricity by country, see Ref. [61].
create a huge global energy gap, as shown in Figure 3.1 [63].

![Global Primary Energy Consumption](image)

Figure 3.1: Global primary energy consumption is dominated by fossil fuels, the use of which has been increasing steadily despite repeated warnings from the climate change conferences of the United Nations (COP) dating as far back as 1995. Decreasing emissions by 50%, as recommended by the IPCC to avoid irreversible tipping points [64] (see blue line in Figure 1.1) creates a large energy gap that must be filled by additional climate-neutral power generation, or by energy savings and recuperation. Consumption was extrapolated linearly from 1965–2021 to account for additional demand from emerging countries. Left part of figure taken from Ref. [65], based on data from Refs. [66, 67], reused and adapted under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Many experimental technologies such as CO$_2$ capture and storage (CCS) will not be viable for large-scale implementation within this short time frame [68]. Filling the energy gap with solar, wind, and nuclear power requires upscaling existing facilities by more than an order of magnitude within seven years, a not inconsiderable task. Therefore, substantial energy savings and efficiency increase will be indispensable. Even tripling the output of existing solar, wind and nuclear installations by 2030 (which may itself be unrealistic), the fossil energy gap would still require a 40% global efficiency increase compared to today. Substantial savings in energy require systemic changes in technology and behaviour, such as transitioning from combustion engines to electric motors, from gas heating to heat pumps and from cars to rail. The global situation is therefore likely to result in energy becoming scarce and expensive in the coming decades, with the potential to directly limit our capabilities to conduct energy-intensive experiments and data analysis in basic research.

This chapter focuses on potential sources of sustainable energy for HECAP+ research infrastructure in Section 3.1, and energy savings and recuperation in
Section 3.2. Saving energy through structural and organisational changes are described elsewhere: see Section 2 for computing, Section 5 for mobility, and Section 7 for procurement.
Individual actions:

- Save energy in all ways practicable, e.g., by avoiding unnecessary heating or cooling of workspace, and by turning off electrical items when not in use.
- Read the sections about computing (Section 2) and mobility (Section 5).

Further group actions:

- Ensure that energy efficiency is a major focus in experimental design, and prioritise technologies that minimise consumption and maximise energy recovery.
- Monitor, report, and assess energy usage with the aim of reducing consumption and resulting emissions.
- Read the section on research infrastructure and technology (Section 6).

Further institutional actions:

- Ensure that energy efficiency is a major factor in the renovation of existing estates and the design and construction of new infrastructure.
- Prioritise moving to renewable energy sources via both local generation, and energy import and export.
- Collate and publish energy usage and emissions statistics, stratifying by source, e.g., heating, experimental infrastructure, computing, transportation, and procurement.
- Lobby for environmentally sustainable energy policy.
Environmental sustainability in basic research

3.1 Low-Carbon Energy

Transitioning the energy demands of HECAP+ research to CO₂-neutral sources will likely require a mix of sources: solar, wind, hydro, geothermal, and nuclear power, many of which will be strongly location-dependent. Despite their relatively low cost (see Figure 3.2), the geographical and geological limitations of renewable energy, combined with the challenge that significantly increasing the share of nuclear power presents (see Case Study 3.1 for details), make a rapid transition to carbon-neutral energy impossible for HECAP+ without some large-scale transmission or import of sustainable energy. Alternatively, efforts could be made to site future facilities near abundant sources of renewable energy, which could have the additional benefit of contributing to the local economy over a longer period. The Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) project [69] is one example. World-leading research centres like CERN, with their history of cooperation across political and ideological boundaries, are uniquely placed to spearhead such initiatives.

Solar Solar energy is abundant, and near-universally available. Its intensity depends on latitude, with the highest efficiencies in the deserts of the sun belts north and south of the equator. According to a 2021 report by the Carbon Tracker Initiative [72], populating an area of only 450,000 km² with solar panels would be sufficient to satisfy global energy demands. This corresponds to an area the size of Morocco, two-thirds that of Texas, or 4% of European

Figure 3.2: Overview of energy-related mitigation options and their estimated range of costs and potentials in 2030, as determined by the IPCC in their Sixth Assessment Report. All costs were calculated with respect to conventional power generation; potentials were assessed with respect to the reference scenario in the World Energy Outlook 2019 [70]. Data source: IPCC WGIII Summary for Policy Makers, Figure SPM.7, Ref. [71]. For further details on how the data was obtained, see Supplementary Material 12.SM.1.2 in Ref. [68].
According to the IPCC [68], “The global technical potential of direct solar energy far exceeds that of any other renewable energy resource and is well beyond the total amount of energy needed to support ambitious mitigation over the current century.” Large-scale adoption of photovoltaic (PV) panels poses concerns due to resource use, particularly the energy-intensive production of silicon used to produce the panels, and end-of-life waste generation. These impacts can be partially mitigated by material recovery in PV cell recycling, and their reuse [73].

Solar panels are also easily retrofitted onto existing infrastructure, and their price has dropped by almost 90% in the last two decades. Unfortunately, solar power can be unavailable when it is needed most: at night and during winter (in countries at higher latitudes), leading to a need to increase its efficiency and storage capacity (see Section 3.1.1). See Case Study 3.2 for a study of the implementation of in-house solar power at CERN.

Wind

By comparison with solar energy, wind energy is more sensitive to local conditions. In Europe, competitive locations for wind energy, with costs below €0.06 per kWh, are primarily offshore, and are concentrated along the coasts of the North and Baltic Seas, the Bay of Biscay, and the English Channel [74]. Landlocked countries, such as Switzerland or Austria, are generally less suited for production of energy through wind turbines. Producing 25% of, e.g., Swiss energy demand from wind power would require populating 100% of its agricultural farmland with wind turbines (although this does not preclude growing crops beneath the windmills). By contrast, fulfilling a quarter of Danish or Estonian energy demand would require less than 4% of the farmland [74].

Hydroelectric

Water power is even more reliant on local conditions, such as high flows or water volumes and large altitude difference, which naturally limits its applicability. However, the energy output of hydroelectric plants is steady, and can be adjusted to demand very quickly, making it a good complement to other renewable sources. It can also be used for energy storage, see Section 3.1.1. The largest hydroelectric capacity is in China, which produces almost 30% of the global hydroelectric power [75], thanks to its large projects in the Yangtze River valleys.

Mega-dams, however, constitute a large intervention on the natural environment, and consequently come with associated risks, such as landslides, earthquakes,

\[10\] Surprisingly, the report also states that there is at most a factor of two difference between the hours of full sunlight available in most countries on our planet (Namibia and Ireland representing two extremes, excluding Iceland).
and destruction of habitats, and can themselves be a source of the potent GHG methane when flooded flora rots. The Three Gorges dam in particular has been controversial both domestically and abroad [76]. In arid areas, or during periods of drought, which are expected to become more prevalent due to climate change, hydroelectric power may be in competition with agricultural needs, and climate change may jeopardise future yields of existing dams.

While the potential for marine power generation from ocean currents, tides, waves, and gradients in salt and temperature (collectively known as Ocean Energy Technologies) is huge, there is no technology currently mature enough to produce marine power at large scale [77].

Geothermal Geothermal energy is a stable source of renewable energy. It consists of residual heat from the time when the Earth was formed and of heat newly produced inside the Earth due to radioactive decay of hot elements in the mantle, by tidal forces due to the Moon and Sun, or by friction along tectonic plate boundaries. Although it has low intensity compared with solar energy, its technical potential of about 1.4×10^6 TW-years is around three times total global energy consumption [78].

The most easily exploitable is the ‘shallow’ geothermal energy stored in the upper few metres of the Earth's surface. This can be employed to provide space heating or cooling for buildings and urban areas using buried pipes containing a circulating fluid as a heat exchanger, and a geothermal heat pump [79]. The low thermal conductivity of the ground limits the total amount of geothermal heat that can be exploited and depends strongly on rain and ground water. Modern geothermal heat pumps use the ground as heat storage and not so much as heat source. The ground heat that is extracted in winter is regenerated in summer by using the heat pump for cooling the building.

Geothermal power generation, however, requires higher temperatures. Easily accessed only in areas of volcanic activity, and along plate boundaries, much geothermal power-generating potential is locked up below common drilling depths, where the rock is less porous. Enhanced Geothermal Systems (EGS) [80] induce porosity by fracturing deeper, hotter rock using high-pressure water injection, to allow for fluid circulation. This hydrothermal ‘fracking’ has attracted significant controversy as in addition to the injection of toxic chemicals into the Earth, which can then pollute nearby groundwater sources, it brings a risk of induced seismic activity if unwittingly carried out near a ‘locked' dormant fault, and was thought to be responsible for triggering a magnitude-5.4 earthquake in the South Korean city of Pohang in November 2017 [81, 82].
Nuclear Nuclear power production has been stagnating on all continents except Asia for the last two decades, and has a share of just 4% of the global energy production, more than 60 years after initial deployment [83]. According to the International Atomic Energy Agency (IAEA), nuclear reactors have a median construction time of 93 months [84], not including planning and permissions. See Case Study 3.1 for an estimate of how many nuclear power stations must be constructed to cover global energy needs.

By definition, an energy source is only sustainable if it does not carry any significant long-term risk for future generations. This understanding of sustainability based on the Brundlandt Report [85] has also been adopted by the IAEA [86], which argues for the ‘weak sustainability’ of nuclear power.

Safety, security and climate resilience of the reactors, and availability of fuel, as well as storage of spent fuel, are important factors. The exact form these concerns take is crucially dependent on future technological developments, to which HECAP+ research contributes directly. Today, several new reactor types are being developed, which promise to have additional safety features, an efficient use of more abundant isotopes and less long-lasting nuclear waste. Bringing nascent technologies to maturity and commercial viability takes time, and in the near term the IPCC does not assess favourably the mitigation potential for nuclear energy, see Figure 3.2. Wars, terrorism and proliferation will always remain concerns.

Case Study 3.1: Filling the energy gap with nuclear reactors

A typical nuclear reactor produces on the order of 1 GW_{el} (i.e., electrical power actually generated). Based on the “substitution method” used in Figure 3.1, this corresponds to 2.5 GW primary energy. According to the IAEA, nuclear reactors have a median construction time of 93 months [84], not including planning and permissions. Filling the entire global energy gap using nuclear power would require \(\sim 8,800 \) additional nuclear power plants within 18 years, which corresponds to building and commissioning an average of 9 new nuclear power plants every week in that period. A community like HECAP+, with experience in planning and implementing large projects, knows that such a huge technological conversion in such a short time represents a significant challenge, especially in the absence of a global road map for such a transition.

\[{\text{The substitution method}} \text{ accounts in a simplified way for the inefficiencies in energy usage and conversions of different primary energy sources, and assumes that electricity is 2.5 times as useful as fossil fuels of the same energy content. The factor 2.5 comes from the 40% efficiency in fossil power plants [87] and is consistent with comparing the numbers in Ref. [88].} \]
Case Study 3.2: Local solar power at CERN

In-house solar power production is not sufficient to cover the full needs of a huge laboratory such as CERN. Nevertheless, it can make up an important contribution to foster a fast transition to renewables. Research centres are often characterised by the many flat rooftops. These rooftops make excellent locations for installing solar photovoltaic (PV) panels.

Using publicly available tools provided by the Canton of Geneva [90] and the Swiss Federal Department of Energy [91], it is possible to estimate the solar potential of these rooftops. Similar public tools are now available for most countries, provided by local governments or non-governmental organizations (NGOs). Figure 3.3 shows part of the main CERN site as taken from the Geneva solar cadastre [90]. Buildings in red are classified as “optimal” for their orientation towards the sun. The large rectangular building in the middle is assembly hall 157. The cadastre lists an estimate of 392 MWh per annum of electricity generation for the south-west half of this 2,055 m² roof, with the other part capable of producing an additional 335 MWh per annum. CERN has 653 buildings with a total roof area of 421,000 m², which amounts to approximately 80 GWh annual electricity generation potential. A comparison with the electricity consumption in 2019 of 428 GWh [1], when the LHC was not in operation, shows that around 18% of CERN's basic (non-LHC) electricity demand could be produced locally with solar power.

Using the cadastre, the cost for electricity from rooftop PV for CERN can be estimated to be fixed around at 50 €/MWh for the next 30 years. This cost is
well below current wholesale market spot prices in France (>120 €/MWh), but also below the average price over summer 2021 (> 70 €/MWh) [92].

For a discussion on potential future energy system configurations for Switzerland, see Ref. [89].

This number does not include areas that are otherwise assigned, e.g., parking spaces for personal vehicles, which can also be roofed with PV panels.

3.1.1 Renewable grid infrastructure

For global power grids to rely more heavily on intermittent sources of renewable energy, such as wind and solar photovoltaic, assessed as having the highest climate mitigation potential to 2030 by the IPCC (see Figure 3.2), much of the existing grid infrastructure and controls will need to be updated to smooth out fluctuations in supply and demand [93]. Grid inertia, which acts as a short-term buffer in fossil-fuel grids in periods where electricity demand outstrips supply, is significantly lower for intermittent sources, compromising the stability of the grid. ‘Smart grid’ infrastructure must provide peak-shifting capabilities and fast frequency response to stabilise electricity supply despite the lower intrinsic inertia of the grid. It will also need to draw upon a novel and expanded energy storage capacity to bridge longer-term gaps between supply and demand [94] (for further discussion, see below), as well as the capability to regulate bi-directional flow of electricity, well-suited to the distributed generation of intermittents. Inverter-based resources with low inertia are ideally suited to near-instantaneous response [93]. Electronic control of this response, coupled with developing ‘grid-forming’ technologies, which allow inverters to emulate a traditional grid’s stable frequency, as well as automated demand-side response to voluntarily disconnect non-critical loads momentarily, have the potential to transform our existing networks [93].

Existing solutions have been utilised successfully in several fully renewable island microgrids, and on a larger scale in the Electric Reliability Council of Texas (ERCOT), the smallest of the three power grids in the United States, which achieved 58% instantaneous wind penetration in 2019 [93]. Scaling up these solutions requires further research, although several highly cited studies argue for the feasibility of 100% renewable-based grids world-wide at low cost, eschewing any fossil fuel or nuclear energy component (for a comprehensive review, see Ref. [95] and also Ref. [96]).

Energy storage The feasibility of pure renewable-based grids is crucially dependent on an increased energy storage capacity, to smooth out fluctuations (on timescales ranging from diurnal to seasonal) in the supply of intermittent renewables, and demand [94]. While the cost of Li-ion batteries have plummeted
40-fold in the past 35 years [97], their development, driven by needs of the electric vehicle industry, has focused on short-duration portable energy storage. Projections show that in order to minimise the costs of a net-zero energy system, storage capacity must increase by almost an order of magnitude, from 160 GW (and 9 TWh total capacity) today, to 1.5–2.5 TW (85-140 TWh) globally by 2040 [94].

Most existing and planned storage capacity is in pumped storage hydropower, a mechanical form of storage where water pumped into a reservoir at high elevation turns a turbine as it flows to one at lower elevation [94]. As well as being geographically limited, however, these open-air reservoirs suffer the same environmental problems as other hydropower projects (see discussion above), and are similarly subject to the vagaries of the climate. A new promising approach to pump storage is the use of undersea bowls that are evacuated to store energy which is restored when they are filled up with water again. An even simpler approach is to build a large ring wall inside of a deep lake, and empty and refill the internal area using pump-turbines. This way, pumped-storage hydroelectricity does not require a separate upper and lower lake, and a single lake is sufficient. Defunct open pit mines, large natural lakes and even the sea allow for new opportunities to install large-scale storage devices with less environmental impact [98, 99].

Interesting alternatives include storing energy as compressed air; or as latent heat in, e.g., aluminium alloy [94]. However, there is need for significant investment in the energy storage sector to bring new ideas, including novel mechanical, thermal, electrochemical and chemical storage methods to commercial viability [94]. For more details on capacity and market-readiness of promising long-duration energy storage methods, see Ref. [94].

3.1.2 Energy import and export

The uneven geographical distribution of sources of renewable energy leads to the question of whether large-scale import and export of renewable energy could be a cost-effective way of closing the energy gap. For Europe, detailed studies have shown that energy import by cable, as well as by chemical energy carriers, have comparable or lower costs compared to local energy harvesting [100].

Technical options to transport electricity over long distances have improved significantly in the last decades. In South America and China, projects to transport electricity over more than 2,000 km by Ultra High Voltage Direct Current (UHVDC) lines are already operational [101].
This technological progress opens up an alternative to the traditional import and export of chemical energy: direct import of renewable electricity, e.g., from Northern Africa to Europe [98, 102]. Indeed, the Xlinks Morocco-UK Power Project [103] aims to connect a solar and wind energy facility in Morocco’s Guelmim Oued Noun region to the UK energy grid by 3,800 km HVDC sub-sea cables by 2030.

An excellent potential for electricity generation by solar and wind power, large unused tracts of land, and existing energy trade partnerships for fossil fuels make North African countries ideal export partners for procuring electricity from sustainable sources. HECAP+ has a record of successful collaboration between nations and could thus be an important player in making this happen. Hence, importing and exporting renewable energy should be considered as part of a catalogue of solutions to cover future global energy needs. One possible scenario for the transmission of solar energy is detailed in Case Study 3.3.

While the import and export of energy is a promising solution on the technical and economic level, constructing wind or solar farms, e.g., in the sun belts of Africa, to then export the power to Europe involves geopolitical and social considerations. Resource and person-power extraction from Africa to the benefit of Europe and America has a long, reprehensible colonial history. Therefore, it is of utmost importance to make fair power trade agreements between the continents that ensure strong integration into local communities and include the local population in the planning and implementation of such projects and related infrastructure. In this way, a win-win situation for all stakeholders should be ensured, and well-planned cooperation has the potential to act in a geopolitically stabilizing way in line with the 16th and 17th UN SDGs ("peace, justice and strong institutions" and "partnership for the goals").

Case Study 3.3: CERN-LINK — Clean power from the desert

The HECAP+ community, CERN in particular, has a long history of effective cooperation across geographical and socio-political boundaries, in the pursuit of science. CERN brought scientists from East and West together during the Cold War, and Arabic and Israeli people together for the SESAME project, the first accelerator laboratory powered by solar energy from the desert [69]. This makes CERN ideally placed to spearhead a project to import solar energy from the deserts of North Africa. This type of spin-off could help cover CERN’s energy needs, while also reinforcing the idea that fundamental research has the potential to solve problems outside its immediate purview in new and innovative ways.
A scenario for connecting, e.g., Morocco, Algeria or Tunisia to Southern France, Spain or Italy by sub-sea cable is plausible from a technological point of view (for a detailed feasibility study, see Ref. [105]), and could be employed for HECAP+ applications (see Figure 3.4). Costs are estimated to be around 0.06–0.07 €/kWh for a year-round power supply of 3.6 GW in the daytime and 2.2 GW at night [98, 102, 106]. This estimate includes infrastructure costs for generating the electricity, buffer storage and transmission line costs. Feasibility and cost estimates agree well with those for previously proposed commercial projects [103].

Electricity imports on this scale would exceed the power needs of CERN, and surplus power could be returned to the European electricity grid to power other research institutions and universities that join the initiative. Southern France is well-suited to the role of import terminal for electricity due to its pre-existing grid infrastructure, as well as its proximity to CERN and other major research institutions.

It is important to acknowledge that additional environmental considerations are required when planning and implementing a project such as CERN-Link, in terms of minimising the impacts on local ecosystems, as well as the marine environments across which the underwater cables would be installed.
Furthermore, it is of paramount importance that fair power trade agreements be put in place to ensure mutual benefit to all stakeholders, including the local communities hosting the solar infrastructure.

3.2 Energy Saving and Recuperation

A first step in reducing energy usage is energy monitoring, which will allow us to assess where improvements are needed. The best energy saving measures will be individual to each location and facility, making it hard to recommend specific actions here, although insulating buildings and ensuring that the heating/cooling systems are maximally efficient are universally applicable measures. For an example of energy recuperation in the context of basic research, see Best Practice 3.1.

Most of the energy budget for many high energy experiments is due to the accelerators and detectors. Initiatives to reduce their energy use are many and varied. Relevant references for detectors are collected in Section 6, see also the discussion on energy saving at LHCb in Case Study 6.3. A particularly impressive example of energy-efficient accelerator design is the Cornell-BNL ELR Test Accelerator Facility [107], based in Cornell. This accelerator saves energy, both by recovering the energy of the bunched particles to accelerate the next batch, and by using permanent magnets to guide the particle beam. See Best Practice 6.3 for more details, and Case Study 6.2 for energy savings using plasma wakefield acceleration technology.

Best Practice 3.1: Recycling energy at DESY

For existing experiments, where minimizing energy usage was not a factor in the design process, it is still possible to save energy retroactively through recycling of energy/heat. Deutsches Elektronen-Synchrotron (DESY) is currently using the waste heat that is generated by condensation of the helium that is used to cool the accelerator, to heat their buildings. This saves 7.5 GWh a year, which is approximately a third of the heat energy used on campus [108]. Together with the University for Applied Sciences in Hamburg, they are also investigating the potential for recycling waste heat from other sources, e.g., the many magnets used in the accelerator. First results suggest it should be sufficient to heat all buildings on campus in this way [109].
4 Food

Over a quarter of global GHG emissions comes from food production [110], and a quarter of this food is lost in the supply chain, or discarded by consumers [111]. Plant and animal agriculture also has extensive and profound negative impacts on the environment through land use, freshwater use and pollution, and terrestrial acidification.

A recent article in *Science* argued that limiting warming to 1.5°C will not be possible without “ambitious changes to food systems” even if fossil fuel emissions are immediately halted [112]. The most impactful change reported in the study is a global switch to the healthy, plant-rich diet recommended by the EAT-Lancet commission [113], which is one that can be implemented immediately, and on an individual level. Supplementing this with measures such as reducing food waste and increasing efficiencies in food production could result in a net carbon-neutral food system by 2100 [112]. While sourcing sustainably-grown food and ‘eating local’ can have a positive impact on food-related emissions (of which transportation is responsible for 6%, see Figure 4.1), the largest impact can be achieved by reducing the consumption of high-methane emitters, such as beef, lamb and dairy [114–116].

However, choices related to the food that we eat are deeply personal and often loaded with cultural and social significance. As such, it is important to acknowledge that changes to food systems will be a gradual process and will not have a ‘one size fits all’ solution. Their equitable implementation will require cross-disciplinary analysis of the implications of such changes for all stakeholders. This includes producers and the local populations to which they belong, and steps must be taken to ensure communities are empowered and resilient to multiple overlapping pressures, from climate change and markets [117]. The devastating impact of the quinoa boom and bust on pastoral communities in Bolivia provides one well-documented example [117, 118]. Moreover, such changes must account for global disparities in wealth, and the variations in availability and access to food sources, to avoid further cementing geographic inequalities in diet. Notwithstanding the care that these factors necessitate, a significant proportion of the HECAP+ community is in the privileged position to be able to reduce their consumption of animal-derived food products and minimise food waste.
Recommendations — Food

Individual actions:
- Reduce consumption of animal products, especially those that result in the highest emissions, e.g., ruminant meat, and dairy.
- Minimise food waste.

Further group actions:
- Prioritise plant-based options in conference catering, and optimise service method to reduce food waste.

Further institutional actions:
- Incentivise the consumption of plant-based products at on-site restaurants by increasing their variety and quality, and subsidising their cost.
- Highlight the environmental impact of food choices through service layout and labelling.
- Minimise food waste by providing multiple portion sizes and donating unused food.
- Read section on waste (Section 7) and limit food-service waste e.g., through industrial composting of biodegradable food containers.
Figure 4.1: Environmental impact of food production, with fine-grained partitioning of GHG emissions by food sector. Figure modified from Ref. [119] under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, based on data from Refs. [114] and [120].

4.1 Food Production

Figure 4.1 reveals the overall environmental impact of food production. The agriculture sector uses 70% of the world’s fresh water reserves and has caused eutrophication\(^\text{11}\) of most of the world’s oceans and freshwater. It is responsible for large-scale deforestation and habitat loss [114, 119, 121], resulting in an historic low in mammalian biodiversity, with total mammal biomass dominated by humans and their livestock [120].

Animal agriculture is responsible for just over half of GHG emissions from the food sector, due to direct emissions from livestock and fisheries, land use, and production of crops for animal consumption.\(^\text{12}\) It accounts for three-quarters of global agricultural land use, while providing just a fifth of the world's calories, and under 40% of its protein supply [114, 119, 121]. The over-use of antibiotics in animal agriculture is partially responsible for the development of antimicrobial resistance in "superbugs" [123], and may be a risk factor for the emergence of

\(^{11}\)Excessive fertiliser runoff to freshwater environments causing algal blooms, oxygen depletion, and fish die-offs.

\(^{12}\)Organic animal-derived foods often have higher yields of GHG emissions, partly because of the animals' lower productivity [122].
new zoonotic diseases [124–126]. Furthermore, there is substantial evidence linking high intake of red meat to an increased rate of heart disease [127].

Shifting consumption away from animal products to a more plant-based diet would significantly reduce both the environmental and healthcare costs of food systems. The potential annual reduction in GHG emissions from eliminating different food groups from our diet is shown in Figure 4.2. Beef, lamb, and dairy, responsible for the largest cumulative global emissions, are also among the highest emitters per 100 grams of protein, see Figure 4.3. In addition, animal products are generally more expensive than plant products [128], as well as being less inclusive of people with dietary restrictions or preferences, due to religion, lifestyle choices, food allergies or intolerances.

4.2 Food Service

Several universities and other institutes for higher education have implemented measures to limit or eliminate consumption of animal-derived foods and reduce food waste, including eliminating red meat from their cafeterias, increasing the quality and variety of plant-based options, changing the cafeteria layout, and modifying default meal options and food labelling [131–134]. By way of illustration, we quantify the GHG savings due to replacing beef with alternative sources of protein in the weekly menu of CERN Restaurant 1 in Case Study 4.1.

At conferences and workshops, the primary purpose of any food served is to...
create additional opportunities for attendees to mingle and discuss. As such, conference organisers enjoy more leeway to make sustainable food choices the default option for these short-term, small-scale events. Best Practice 4.1 contains two examples of successful physics conferences with plant-based catering. They highlight, among other things, the importance of institutional partnerships with plant-friendly caterers, and organisers should push for these if they do not already exist. For further discussion on sustainability at conferences, see Section 7.2.2.

Case Study 4.1: Sustainable catering at CERN Restaurant 1

CERN Restaurant 1 (R1) serves an average of 2,000 meals per day [135]. It offers five hot meal options daily, and has recently overhauled its menu options to include a larger variety of vegetarian and plant-based options, including at least one plant-based main course. We assume each of the five mains are chosen with equal likelihood, and neglect cold food options, such as salads and sandwiches.

Figure 4.3: GHG emissions in CO$_2$e per 100 g of protein. Figure reused from Ref. [119] under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, based on data from Ref. [114].

In, e.g., the week beginning 27 June 2022, beef, fish and seafood were each served three times as the primary component of the meal, veal once, poultry five times, and fish twice. We assume that these distributions are representative of a typical weekly menu at R1 and that the beef originated from beef-herd cows.
The GHG emissions of the various forms of protein are shown in Figure 4.3.

Substituting each gram of protein from beef with a gram of protein from chicken or fish reduces emissions by 440 g CO$_2$e. Assuming a serving contains 20 g of proteina, substituting all beef meals at R1 with farmed fish or chicken would result in a reduction of its annual carbon footprint by 528 tCO$_2$e.b This corresponds to approximately 260 return flights between London and New York. Both the emissions savings and the overall environmental impact would be even greater if plant-based substitutions were made.

Instituting one weekly meat-free day (taking as a benchmark a day where one beef, one fish, and one poultry meal were served, and replacing them with one tofu-based meal and two pulse-based meals) would result in a reduction of 735 tCO$_2$e annually, where the bulk of the savings comes from the beef replacement.

aThe Mayo Clinic recommends 15–30 g of protein per meal [136].
bSubstituting 1,200 beef meals weekly over 50 weeks, each meal consisting of 20 g protein, with chicken or fish leads to a reduction of 1,200 × 50 × 20 × 0.440 kg CO$_2$e in emissions. Note however that farmed chicken and fish give rise to significant environmental impacts in sectors other than GHG emissions [137]. The estimated emissions overshoots CERN’s reported 2019 beef-related emissions by a factor of two [138]. The reason for this discrepancy is unclear, since details of the calculation from Ref. [138] were not shared.

Best Practice 4.1: Plant-based catering at conferences and workshops

We thank Hannah Wakeling (for WIPC 2019) and Stefan Fredenhagen (for YRISW 2019) for sharing their experience as part of the respective organisational teams.

The Women in Physics Canada Conference 2019 [139] at McGill University in Montréal was designed as a ‘sustainable’ conference. Ecologically-friendly choices were made by offering purely plant-based catering, sustainable goodie bags, and use of reusable tableware (see also Section 7.2.3). Most of the feedback regarding these measures was positive. An important point for the organisers was to advertise the catering as sustainable, and not only as vegan, since according to their experience this “helped the way the catering was received” by the participants. The organisers mentioned that it can be difficult to find a vegan caterer if the only choices are partners of the university hosting the conference, but it was nevertheless possible in their case.

The ‘Young Researchers Integrability School and Workshop (YRISW) 2019: A modern primer for 2D CFT’ [140] in Vienna offered only plant-based catering. The organisers of the school selected this option as the “most inclusive
approach", where people are not separated according to their eating habits. They wanted to advertise plant-based food to the participants, and “reduce the environmental impact of the event”. The limited food options also reduced the total cost of the catering. The organisers received positive feedback, not only for the food itself but also for the “effort to reduce the ecological impact of the school”. The organisers emphasised the importance of finding a specialist plant-based caterer to ensure the quality and flavour of the food.
5 Mobility

Mobility constitutes a significant portion of the emissions of a HECAP+ researcher. This includes short daily commutes between the home and the workplace, and longer-distance business travel (see Figure 1.4).

Transport accounted for almost a fifth of total global emissions in 2016 [141], and is the sector that saw the highest growth in pre-COVID years[142]. Demand for car, rail and air transport is expected to continue to increase over time with increasing global population and income levels.

Unsurprisingly, self-powered mobility, such as walking and cycling, are the most carbon-efficient means of transportation, with train travel next best. A quantitative comparison between these and other options requires further details to be specified, such as the distance travelled, the fuel efficiency of the vehicle used and the number of passengers carried, and the underlying electricity mix for the country of travel. In the UK for instance, driving alone in a medium-sized petrol-fuelled car yields smaller GHG emissions than air travel for distances shorter than 1,000 km, whereas flying in economy class beats driving over longer distances [143] (data taken from Ref. [144]).

For a detailed comparison of emissions due to various forms of transport within France, see Figure 5.1.

When and how we travel, however, are not always free choices, being constrained by existing transport infrastructure, local geography, our research, finances, and caring responsibilities. Universities and HECAP+ institutions, with their large and progressive workforce, can help tip the balance in favour of the more environmentally sustainable option with a judicious combination of policy, incentives, on-site infrastructure and advocacy.

Our current societal infrastructure is set up to facilitate individual travel by car, to the detriment of a large part of the population. Universities, as large employers with a relatively progressive workforce, have the potential to act as instigators of change in this. Making public transport and cycling the preferred options when possible will increase demand for these more sustainable forms of

13 These estimates include a “radiative forcing” factor of 1.9 for air travel, which accounts for a larger warming effect due to aeroplanes emitting GHGs high in the atmosphere.
transport and thus encourage cities to improve the infrastructure for them.

Nevertheless, efforts to limit emissions resulting from travel must be balanced against legitimate needs for mobility: the establishing and maintenance of close collaborative relationships, sharing of research outputs, individual exposure and career development, and travel to research facilities. Changes to our travel culture and policies must be implemented so as to benefit and, at the very least, not to worsen barriers to inclusion, by avoiding the disenfranchisement of members of our community such as early-career researchers, members of our community from the Global South or those otherwise geographically isolated.
Recommendations — Mobility

Individual actions:

- Re-assess business travel needs, using remote technologies wherever practicable.
- Choose environmentally sustainable means of transport for daily commutes as well as unavoidable business travel, amalgamating long-distance trips where possible.

Further group actions:

- Define mobility requirements and travel policies that minimise emissions, while accounting for the differing needs of particular groups, such as early-career researchers or those who are geographically isolated.
- Re-assess needs for in-person meetings, and prioritise formats that minimise travel emissions and diversify participation by making use of hybrid, virtual or local hub participation, and optimising the meeting location(s).

Further institutional actions:

- Support environmentally sustainable commuting by improving on-site bicycle infrastructure, subsidising public transport and providing shuttle services.
- Disincentivise car travel where viable alternatives exist, facilitate car pooling, and provide on-site charging stations.
- Incentivise the reduction of business travel, e.g., by implementing carbon budgets with appropriate concessions.
- Ensure unavoidable travel is made via environmentally sustainable means through flexible travel policies and budgets, and the use of travel agents that offer multi-modal itineraries. Employ carbon offsetting only as a last resort.
- Remove any requirement on past mobility as an indication of quality in hiring decisions.
- Lobby for improved and environmentally sustainable local and regional transport infrastructure.
5.1 Commuting

Changes in commuting patterns are typically affected by life circumstances, including changes in education, employment and residence [145]. The viability of environmentally sustainable mobility, like walking, cycling and taking the train, depends crucially on characteristics of the home and workplace locations, including the distance between them, and their local environment. These properties are seen to influence the relative importance of commuting and business emissions for different HECAP+ institutions.

For example, CERN, FNAL, and ETH Zürich DPhys have wildly different CO₂ emission profiles due to personal transportation. While emissions due to commuting were roughly equal to those for business travel at FNAL, commuting outweighed business travel for CERN, and conversely, business travel swamped commuting emissions for ETHZ. This reflects the unique environment and characteristics of each of these research centres:

- ETHZ is located in an urban centre and is well connected to the local public transport. In 2008, only 1,700 tCO₂e were recorded for commuting, with 7.5 to 10 times larger emissions attributable to business travel (using numbers from 2006–2012). It is clear here that the emissions per capita for all staff (including researchers) are significantly smaller than those for FNAL or CERN.

- FNAL and CERN have more rural settings, with a 77% majority of CERN employees commuting by car from France. FNAL’s commuter emissions [146] of about 6,000 tCO₂e are approximately on par with business travel emissions, whilst CERN quotes 5,836 tCO₂e of commuter emissions compared to 3,330 tCO₂e business travel emissions for its approximate 4,000 staff members. The small amount of travel emissions compared to emissions from commuting reflects to some extent the status of CERN as a scientific centre, to which other members of the community are expected to travel to and where travel is easier to avoid, also because the experiments are located at CERN.

Whilst ETHZ, FNAL and CERN face different boundary conditions, all three of them, and HECAP+ institutions in general, should aim to reduce emissions from

14In a typical year, FNAL’s approximately 1,900 staff members commute an average distance of 15.6 miles each way mostly by car. This translates into 5,987 tonnes of CO₂ when assuming 250 working days per years and using 494 g of CO₂ per mile as per US Environmental Protection Agency [110]. This is only 5% less than FNAL’s emissions from air travel, calculated from 8.2 million (or 42%) fewer miles flown in 2020 using 200 g per air km [147].
<table>
<thead>
<tr>
<th>Institute</th>
<th>Initiative</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESY</td>
<td>Reduced-price ticket for public transport for all employees</td>
<td>The non-transferable ticket, with a 30 % subsidy for employees, is also usable outside working hours, and allows free network-wide travel for an additional adult and up to 3 children (age 14 and under) on weekends and holidays. Requires a subscription of more than 6 months. Once suspended, a cooling-off period of 9 months is required to be eligible for re-subscription. This is problematic if the employee is posted abroad for a few months. With the implementation of the “Deutschlandticket” in Germany, the terms have slightly changed [199, 148, 149].</td>
</tr>
<tr>
<td>FNAL</td>
<td>Shuttle service to and from Chicago Metra trains for all employees</td>
<td>There are two scheduled connections in the morning and three in the afternoon, on demand at other times, from 06:30 to 18:58. A ticket costs $2.25 (cash only), payable to the bus driver [150]. The regular shuttle does not connect to the Metra station serving the fast train to Chicago (Route 59); FNAL do not offer pre-tax public transport ticket purchase.</td>
</tr>
<tr>
<td>France</td>
<td>Public transit subsidy [151] or 300 €/year for all employees who cycle or carpool [152]</td>
<td>Honours system for the 300 €/year. The adoption of the roughly 50 % reimbursement on public transport subscription depends on how well connected each institute is.</td>
</tr>
<tr>
<td>Germany</td>
<td>General tax reimbursement for commuting depending on distance</td>
<td>For each km travelled to work 0.30 € is deducted from the taxable income (0.38 € per km above 21 km per one way starting from 2922) [153]. While this was originally thought to cover the expenses of private cars, it now applies to all means of transport, so that also cyclists or pedestrians obtain the same financial advantage even if they have no direct costs.</td>
</tr>
<tr>
<td>University of Sheffield</td>
<td>Bike to work scheme for all employees</td>
<td>Possibility to borrow an e-bike (or a bike) for free for 2 months in order to test commuting by bike. Ability to rent bikes throughout the semester and to buy reconditioned bikes. Over 1,400 cycle parking spaces available throughout campus and at the residences. Service to provide free bike checks and at-cost servicing and repairs for staff and students funded by the university. (All UK universities.) Financial help to buy an e-bike. (However, this is based on reducing the university’s financial contribution to the pension scheme over a set amount of time.) [154]</td>
</tr>
</tbody>
</table>

Table 5.1: Institutional/country-wide measures to encourage sustainable commuting amongst employees. This is a non-exhaustive list; similar initiatives are also offered by other employers.

This reduction requires an interplay of institutional and individual actions: while institutions cannot force employees to choose more environmentally sustainable commuting habits, they can incentivise them through various measures, from the availability of bicycle-friendly infrastructure, such as showers and secured/covered parking, to financial incentives for greener transportation. They can also allow employees to avoid long commutes by formalising telecommuting options, which have become more normalised since the start of the COVID-19 pandemic, and use their standing to push local authorities towards better public transit/cycling/carpool infrastructure. Individuals and groups can, on the other hand, push for these actions at the institutional level. Table 5.1 collects some means by which ETH, FNAL and other academic and HECAP+ institutes promote ‘green’ transport. An estimate of the emissions per distance of different forms of transport in France is presented in Figure 5.1.
Figure 5.1: GHG emissions for different means of transport (in gCO$_2$e per km). Emissions from electricity and vehicle production as well as fuel combustion are included. All data is for 2019–2020, and comes from the database of Ref. [155] — see, in particular, Ref. [156] — and assumes the electricity comes from the French grid, which is a factor of 10 less carbon-intensive than other countries [157]. For a comparison with the UK, see Ref. [143]. Note that emissions from personal transport do not scale linearly with number of passengers.

5.2 Business Travel

A global scientific endeavour such as HECAP+ will mandate some amount of long-distance travel, e.g., to experimental sites, or to build close working relationships. However, the current academic culture which rewards hyper-mobility is neither environmentally sustainable, nor equitable to all scientists. Visa rules and prohibitive long-haul travel costs can make participation in conferences extremely challenging, especially for researchers from the Global South. Moreover, the freedom to travel can be heavily restricted for people with disabilities, health impairments or caring responsibilities. For example, the burden of childcare is still unequally distributed, and this burden falls predominately on female shoulders [158].

Emissions from commercial aviation is a long-recognised problem, contributing 2.5% of CO$_2$ emissions and 3.5% of ‘effective radiative forcing’ (a closer measure of aviation’s impact on warming as explained in footnote 13) [159] in 2018. Note that the majority of these emissions derive from the one-tenth of the world’s population that can afford air travel. Almost all HECAP+ scientists belong to the 4% of the population taking international flights, and many fall within the
1% classified as the most frequent flyers [166]. These statistics highlight the inequalities inherent in travel emissions.

More troubling is that global aviation statistics belie the significance of business travel emissions for many HECAP+ researchers, which are comparable to, and in some cases even dwarf, their direct and indirect emissions (see Figure 1.4). This is clearly in tension with the push to net zero emissions, particularly given that we do not expect the aviation sector to decarbonise at the same rate as the rest of the transport sector [161, 162].

Emissions related to conference travel have been studied in detail and dominate conference-related emissions [163, 164], contributing annual emissions 30% larger than the total annual transportation emissions for Geneva (720 kilotonnes CO$_2$ [165]). However, the CO$_2$ emissions for a single conference trip amount to about 7% of an average individual’s total CO$_2$ emissions [163]. This might be even worse for HECAP+ researchers, for whom frequent trips to experimental sites and meeting venues to undertake international collaborations are common. See also emissions estimates for business travel of members of the LHCb collaboration in Case Study 6.3.

Discussions about reducing business travel are highly charged, as active engagement with other members of the scientific community is integral to scientific practice. Any changes that we make to HECAP+ travel culture have to be considered in the context of other aspects of our working practices, such as hiring decisions, where any curbs on travel may, e.g., disproportionately impact early-career researchers. At the same time, the reprioritisation of business travel and a move toward a greater share of virtual/hybrid formats can have a positive impact both on the climate and on inclusivity.

For necessary travel, sustainable alternatives to air travel should be prioritised where possible, keeping in mind that the increased travel time and costs of sustainable travel as compared with air travel could make this choice difficult for researchers with caregiving responsibilities, or limited travel budgets. In Case Study 5.1, we compare emissions, travel time and cost of different modes of travel to CERN, from various starting points within Europe, for CMS Week in January 2022. HECAP+ institutions and funding bodies are beginning to implement more sustainable travel policies, including travel top-ups for green travel; we highlight two examples in Best Practice 5.1 and Best Practice 5.2.

If the community is to rethink this travel culture and move toward more hybrid/virtual modes of engagement, we must recognise that these require
additional planning to maximise engagement, which amounts to much more than streaming the in-person event format (see Case Study 5.3). It is also important to appreciate that virtual participation requires an internet-ready device and stable connection, and devices with which to connect, which may not be universally available in lower income countries. A possible remedy for this might be the concept of hub conferences, where the conference has several locations spread globally (see, e.g., Ref. [166]). In Case Study 5.2, we study travel emissions and participation in the context of the last 5 instances of the International Conference for High Energy Physics (ICHEP) conference, and assess the reduction in emissions from optimising the conference location, moving to a hub model, or hybrid/virtual forms of attendance.

Case Study 5.1: Sustainable travel to CERN

The itineraries in Table 5.2 were found for travel to CERN for, e.g., CMS Week, 24th–28th January 2022, as found on 30th November 2021\(^a\). Although emissions were significantly smaller for rail travel as compared with travel by car or air, as expected, this must be weighed against the increased travel time, and in many cases, cost of rail travel. Note that the air travel times are underestimated as they do not include travel to the airports, which are usually distant from the city centres, or the usual buffer time required for check-in and security formalities. For itineraries that include sleeper trains, the additional cost of the train could offset a night’s hotel accommodation at origin or destination.

\(^a\)Prices and carbon footprint rounded to nearest whole number. For prices not given in euros, currency conversions were made using Google currency converter. Carbon footprints for one-way travel were calculated using Ref. [167] and then doubled, using all default assumptions, except for toggling on the climate factor for flights. Precise departure and arrival information was not used for calculation of the flight footprint. Since some airports are not included as possible destinations, the footprint was calculated from the central train station in the origin city to the central train station in the destination city, and the footprint of travel to the airport is assumed negligible (in comparison to the flight). Train fares quoted are for the most convenient train journeys from the central station in the origin city to the central station at the destination. For longer journeys, preference was given to itineraries with overnight trains to maximise efficiency per euro spent, assuming savings on an additional night in a hotel. For all overnight trains, quoted prices include reservation in shared sleeper cabin. Female-only occupancy can be specified. Note that in many cases there may be a limited number of ‘super saver’ tickets that are available for purchase ahead of time. Air fares were for the ‘best’ option available on Skyscanner [168], with inbound flight arriving in time for an assumed midday start of meetings at CERN, and outbound flight departing after 15:00 hours on Friday. Flight prices were taken directly from the airline where possible, and include a standard-sized cabin bag, but not necessarily a checked bag. Durations include flight time only and do not include airport check-in times.
<table>
<thead>
<tr>
<th>Distance</th>
<th>Origin</th>
<th>Mode of Transport</th>
<th>Travel time (one way)</th>
<th>Itinerary</th>
<th>Price (EUR)</th>
<th>Emissions (kg CO$_2$e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 600 km</td>
<td>Paris</td>
<td>Train</td>
<td>3h15</td>
<td>Out: Mon 24th 8:18-11:29 In: Fri 28th 14:29-17:42</td>
<td>178</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight ORY–GVA</td>
<td>~1 hr</td>
<td>Out: Mon 24th 8:26-8:25 In: Fri 28th 19:45-20:15</td>
<td>98</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Car</td>
<td>5h42</td>
<td></td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>> 600 km</td>
<td>Hamburg</td>
<td>Train (2 changes)</td>
<td>~13.5 hrs</td>
<td>Out: Sun 23rd 20:39-18:18 (+1 day) In: Fri 28th 18:15-18:54 (+1 day)</td>
<td>258</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Car</td>
<td>9h58</td>
<td></td>
<td></td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Car</td>
<td>8h32</td>
<td></td>
<td></td>
<td>196</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Car</td>
<td>~6 hrs</td>
<td></td>
<td></td>
<td>183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight BCN–GVA</td>
<td>~1.5 hrs</td>
<td>Out: Mon 24th 8:48-16:26 In: Fri 28th 17:30-18:25</td>
<td>83</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Car</td>
<td>7 hrs</td>
<td></td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>> 1, 200 km</td>
<td>Warsaw</td>
<td>Train (2 changes)</td>
<td>22.5–24.5 hrs</td>
<td>Out: Sat 22nd 19:49-18:18 (+1 day) In: Fri 28th 18:42-19:15 (+1 day)</td>
<td>319</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Car</td>
<td>12.5 hrs</td>
<td></td>
<td></td>
<td>398</td>
</tr>
</tbody>
</table>

Table 5.2: Comparison of modes of travel to CERN from different origins. The mode giving rise to the lowest emissions for each origin is highlighted in green.
Case Study 5.2: Comparative study of travel emissions for ICHEP conferences (2012–2020)

Based on the study of the annual meetings of the American Geophysical Union (AGU) in Ref. [147], and the methodology and software tools employed therein, we undertake a survey of the past five editions of the ICHEP with the aim of assessing the GHG emissions of conference travel to ICHEP, as well as the (geographical) diversity of participants.

ICHEP is a biannual conference with a large and steadily growing participation, of order 1,000 researchers, and a location that alternates mainly between Europe, America and Asia. We study the 5 most recent instances, with locations in Melbourne, Australia (2012); Valencia, Spain (2014); Chicago, United States (2016); Seoul, Korea (2018); and Prague, Czech Republic (2020, fully virtual). a

Methodology Participant details were taken from the Indico conference system registration pages [169]. The departure location for each participant was assumed to be the city of their affiliation, save for cases where it was clear that the participant was based in Geneva, as is often the case for members of LHC collaborations. Direct travel to and from the conference was assumed. Distances were calculated as the great-circle distance using coordinates obtained with Nominatim from the OpenStreet Map data base. Rail, car or bus travel was assumed for all journeys with distances of less than 400 km, with air travel assumed for longer distances. ‘Short-haul’ was defined as travel distances of less than 1,500 km; distances up to 8,000 km are ‘long-haul’ and longer distance still were classified as ‘super long-haul’.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24,809</td>
<td>764</td>
<td>966</td>
<td>1,129</td>
<td>1,178</td>
<td>2,877</td>
</tr>
<tr>
<td>GHG emissions per participant [kg CO₂e]</td>
<td>2,883</td>
<td>8,432</td>
<td>1,902</td>
<td>2,699</td>
<td>2,648</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.3: Total number of participants of recent ICHEP conferences and the GHG emissions per participant. The corresponding numbers for the American Geophysical Union (AGU) Fall Meeting [147] are shown for reference.

Table 5.3 shows the average GHG emissions per participant for the ICHEP editions alongside those for the 2019 AGU Fall Meeting for reference. With the exception of the 2012 Melbourne edition of ICHEP, the per-capita emissions
were significantly lower for ICHEP, which is a “travelling” conference, as compared with the stationary AGU Meeting, which always takes place in San Francisco. This indicates that moving a conference series between continents naturally reduces the travel-related emissions as participants tend to wait for the conference to be held near them to make the trip. Comparing the geographical distribution of home institutes for each conference reinforces this conclusion. Note that ICHEP Melbourne (2012) was the first and only ICHEP conference taking place in Oceania.

The emissions for two typical ICHEP conferences, one in Europe (Valencia) and one in Asia (Seoul) are displayed as a function of travel distance in Figure 5.2. A large fraction of attendees at the Seoul conference had to fly super long-haul, giving rise to the majority of the emissions. Emissions for the remaining half of the attendees was nearly negligible. This was not the case for Valencia, where as many attendees travelled short haul travel or less. It is also clear that the bulk of the emissions is due to long-haul or super long-haul air travel.

![Figure 5.2: Emissions per distance for ICHEP Valencia and ICHEP Seoul shown in tCO\(_2\)e (left axis) and as share of the total emissions. Additionally, the emissions caused by the 17% and 36% of participants travelling furthest are shaded in green.](image)

Reference [147] investigated possible optimisations of the conference location for the given participant distribution in order to reduce emissions. Note that this is a slightly artificial construction because of the basin of attraction phenomenon discussed above, where participant distribution is self-selecting, based on the conference location. Unlike the AGU example, where moving the conference location to the middle of the country, rather than on a coast, significantly decreased the travel-related emissions, we found that the ICHEP locations were already pre-optimised, and further optimisation yielded at most a 10.2% reduction of GHG emissions. (The real outlier again was Melbourne, where the majority of participants had to fly super long-haul, and for which a 70.7% reduction would be achievable given the same participants by changing the location). If the location was optimised using participants from all 5
ICHEPs, the optimal location would be close to Amsterdam.

Further emissions reductions are only possible with a hub-based conference, and mandatory virtual participation above a certain distance from the hubs. Reference [147] trialled hubs in Chicago, Seoul and Paris, with virtual attendance for all participants with origins greater than 2,000 km from the hubs. Having found that Chicago, Seoul and Paris were not far from the optimal locations for the respective ICHEP conferences, we did the same, for the total ICHEP participation over the 5 conferences. Simply using a 3-hub model can reduce the carbon footprint of the conference to around 15–35 % of a traditional one. Adding compulsory virtual participation for more distant participants reduces the carbon footprint further by 5–15 % of a traditional conference with 10–25 % of the participants attending virtually. As a test case, and without any prior optimization, we chose Rio de Janeiro, Johannesburg, and Kolkata as alternative hubs. This, however, increased virtual participation to 95 %, mainly due to the strong European participation in HEP and the remoteness of Johannesburg from Western Europe. Switching Paris for Johannesburg reduced the footprint to about 10 % of the nominal one, with 40% of participants attending virtually. While the virtual fraction is still relatively high, it might be acceptable in a bid to include more remote HEP communities (like Melbourne), while keeping the emissions low.

Finally, one might expect a fully virtual conference to be more inclusive than in-person ones, especially for underserved participants, such as those with care-giving responsibilities, limited travel funding, or visa problems. We studied this by classifying participants by the human development index (HDI) [170] of their country of affiliation, and dividing them into four categories (low, medium, high and very high HDI). The share of participants in these categories for each of the ICHEP conferences is shown in Figure 5.3. Indeed, in addition to enjoying the largest number of participants (by a factor of 2), the virtual ICHEP in Prague had the largest proportion of participants from countries with high or medium human development index, although it was not clear how much of this increase was due to its virtual nature, as opposed to a steady increase in physics participation from high and medium-HDI countries. There was virtually no participation from low HDI countries in any of the ICHEP conferences studied.
ICHEP attendees by human development index

<table>
<thead>
<tr>
<th>Location</th>
<th>Very High</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seoul 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valencia 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melbourne 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prague 2020 (virtual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.3: The fraction of participants, categorised by human development index (HDI) [170] attending the last 5 instances of ICHEP.

\[a \] At the time of writing, the 2022 conference, held in Bologna, had not yet begun.
\[b \] Optimisations were carried out with a grid spacing, and hence resolution, of 1 degree longitude and latitude.
\[c \] Examples of countries with very high HDI are Norway, Malaysia, Kuwait and Serbia, high HDI are, e.g., Trinidad and Tobago, Albania, Egypt and Vietnam. Medium HDI countries include Morocco and Pakistan, while low HDI countries are e.g., Nigeria, Chad and Niger. A brief overview of the categories can be found in Ref. [170].

Best Practice 5.1: Green travel top-ups on Erasmus+

The EU mobility and training programme Erasmus+ has implemented funding top-ups for environmentally sustainable travel, which is more costly than point-to-point air travel in many instances, in particular between hubs for low-cost airlines. See Table 5.4 for exact supplements for participants who receive travel funding, as excerpted from the 2022 programme guide [171]. Green travel over large distances can be more time-consuming. The programme allows for this by providing travel support for an additional 4 days of travel.
<table>
<thead>
<tr>
<th>Travel distance (km)</th>
<th>Standard travel (€/participant)</th>
<th>Green travel (€/participant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–99</td>
<td>23</td>
<td>210</td>
</tr>
<tr>
<td>100–499</td>
<td>180</td>
<td>210</td>
</tr>
<tr>
<td>500–1,999</td>
<td>275</td>
<td>320</td>
</tr>
<tr>
<td>2,000–2,999</td>
<td>360</td>
<td>410</td>
</tr>
<tr>
<td>3,000–3,999</td>
<td>530</td>
<td>610</td>
</tr>
<tr>
<td>4,000–7,999</td>
<td>820</td>
<td>820</td>
</tr>
<tr>
<td>> 8,000</td>
<td>1,500</td>
<td>1,500</td>
</tr>
</tbody>
</table>

Table 5.4: Green travel supplements for Erasmus+ participants [171].

Best Practice 5.2: Internal regulations to reduce the impact of business travel at DESY [109, 172]

The regulations at DESY have been based on the goal of preserving the excellence of science and career opportunities while reacting to the necessity to save CO\(_2\) and other emissions. With its directive for business trips adopted in 2021, DESY relies on the climate policy principle: Avoid — Reduce — Compensate.

Avoid: The number of business trips will be reduced by 30% compared to the situation before the start of the COVID-19 pandemic. This means that all travel planning is reviewed to identify whether the trip is needed to achieve the intended purpose, whether a virtual meeting could be just as beneficial, whether rotational changes between presence and digital are possible, and whether and how appointments can be bundled. In addition to CO\(_2\) savings and travel time, it should also be considered how much of the time spent traveling and for travel planning can actually be used as working time, and what costs are incurred or saved. Ultimately, digital meetings also contribute to a better flexibility of family and work life. They also reduce travel-related risks.

Reduce: For some time now, it has already been possible to use the train instead of the plane, even if the costs were higher. With the new directive, the use of the train is now mandatory if the destination can be reached within six hours total travel time. It should also be noted that the usable working time during the trip for rail travel is given as at least 50% of the travel time (depending on the transfer frequency) and for flying it is assumed to be about 25% of the travel time.
Compensate: Until recently, compensation was not possible under the Federal Travel Expenses Act. However, since September 2020, there is a new regulation on the reimbursement policy for carbon offsets from the German ministry of science, whereby also grant recipients like DESY are allowed to offset their CO$_2$ emissions for business trips. Starting in 2021, DESY will compensate the consequences of unavoidable air travel. There are established systems through which the climate-damaging effects of travel can be offset. The money goes to climate protection projects, including energy efficiency, biogas or biomass, solar energy, and environmental education. The selection of the compensation projects can be steered by DESY.

Case Study 5.3: Cosmology from Home

This case study is, in part, adapted from the Cosmology from Home website [173].

Cosmology from Home (CFH) [173] is an “online by design” conference series that has been run on a yearly basis since 2020. It exploits the advantages of digital communication to accomplish things that have no analogue in traditional conference formats, while staying true to the dynamic and social nature of traditional conferences.

CfH is spread over two weeks, with two days per week dedicated to plenary and parallel talks. Talks are pre-recorded and shared with the conference participants ahead of the start of the conference. Other than a strict time limit, CfH places few constraints on the format of the talks. Participants are expected to watch the talks before the scheduled online discussion events. The scheduled discussions last a maximum of three hours per day to mitigate online fatigue, but multiple sessions can be scheduled to accommodate different time zones.

Other days are reserved for themed discussions, which are proposed by the participants. Topics have included content related directly to cosmology, to scientific research more generally (i.e., technical or computational aspects), and social aspects, such as inclusivity and outreach in science.

The live discussions are hosted in virtual conference venue spaces to create a social atmosphere in which participants can wander around and join conversations. Suitable conference spaces are, e.g., Sococo [174], Welo [175] and Gather [176]. In case the number of participants is such that the conference spaces are too small to host everyone at once, break-out rooms of a suitable video-conferencing platform can be used. In the specific case of CfH so far, this
CfH is coordinated asynchronously through an online message board, and a large part of the conference is dedicated to asynchronous text-based discussions. These discussions can start before the official opening of the conference and continue long after the conference has finished. In previous years, CfH used Slack [178]. (Alternatives include MatterMost [179], Zulip [180], Microsoft Teams [181] or Discord [182].) Discussion channels are grouped according to the scheduled live-talk discussion sessions (see below). Participants can discuss points in dedicated threads in these channels. Once a given discussion has grown sufficiently and has branched out into different sub-discussions, it can be given its own dedicated channel.

In addition to scheduled talk discussions, CfH implements scheduled themed discussions. These are moderated, workshop-style discussions on cosmological themes that are of interest to the conference participants. The topics are suggested, voted on and chosen via the Slack workspace. People can connect to the session via the conference space, but the main session is hosted in Zoom break-out rooms.

The final live discussion format featured by CfH is composed of spontaneous and unscheduled “informal” live discussions. The time allocated to the scheduled live discussions is limited. The informal, breakaway sessions allow the participants to engage in more detailed explorations of the topics brought up by the live and asynchronous discussions.

The final live component of CfH consists of social events and interaction formats, such as social games and casual get-togethers, which complement the scientific discussion sessions on all days of the conference. These activities aim to reproduce (at least partially) the evening interactions of in-person conference social events.

One of the main advantages of the CfH format is that, compared to an in-person conference, a much longer time can be spent debating the talks of the participants. This allows for a much greater dissemination and understanding of the research that is presented. Additionally, it removes the need for travel. This keeps the participation costs low and offers the potential for the conference to be carbon neutral or carbon negative (achieved, at present, through carbon offsetting of residual emissions). The online format also makes the conference accessible to researchers from all over the world, subject to the availability of
a suitable device and a stable internet connection by which to connect. The geographical distribution of participants in the previous three CfH conferences are shown in Figure 5.4.

![Geographical distribution of participants](image)

Figure 5.4: Geographical distribution of Cosmology from Home participants for each of the installments by year.

Additionally, participants can watch the talks according to their own schedules and personal obligations. Participants are able to pause and restart the talks, take time to digest them and to look up background material. They are also able to prepare and raise points for discussion in any of the conference environments. The asynchronous discussions can be tailored exactly to the schedule of the conference participants.

In the first CfH (2020), participants needed time to adjust to the format. This was to be expected, and the organisers actively encouraged participants to partake of the various aspects of the conference and actively modelled the expected social norms. The activity and enthusiasm of participation increased year on year. Speakers created innovative and accessible talk records, and participants regularly referred to these in the live and text-based discussions. Participants organised watch parties and impromptu discussions, made use of the various breakout rooms, and gathered in the virtual environments. The themed discussions proved to be particularly popular, and parallel sessions were often necessary to accommodate the high number of topic suggestions.

All participant feedback has been constructive and positive, and CfH has been well attended. The number of CfH participants were 255, 427 and 275 in 2020, 2021 and 2022, respectively [173]. The format is easily tailored to various topics: a conference featuring this format in HEP is expected to be run in late 2023.

a "Unscheduled" means that the discussions are not part of the conference program. The participants can and do schedule these discussions on the asynchronous platform.
6 Research Infrastructure and Technology

HECAP+ research areas rely on big science infrastructure. These particle accelerators, large-scale collider experiments, observatories and associated buildings infrastructure have a lifetime environmental impact from cradle to grave. This is recognised in Section 8, “Sustainability considerations”, in the Accelerator R&D Roadmap of the European Strategy for Particle Physics [183]. It divides the topic into three aspects:

- Energy efficient technologies,
- Energy efficient accelerator concepts, and
- General sustainability aspects.

The first two focus on the biggest impact of accelerators: the energy consumption during their operation. One aspect focuses on the current technology and its energy efficiency, the other on the development of new accelerator concepts with smaller energy requirements. These topics are discussed in depth in other sections of the Strategy. The third aspect is more broadly defined and considers sustainability beyond energy [183]:

“A carbon footprint analysis in the design phase of a new facility can help to optimise energy consumption for construction and operation. For cooling purposes accelerator facilities typically have significant water consumption. Cooling systems can be optimised to minimise the impact on the environment. For the construction of a facility environment-friendly materials should be identified and used preferably. The mining of certain materials, in particular rare earths, takes place in some countries under precarious conditions. It is desirable to introduce and comply with certification of the sources of such materials for industrial applications, including the construction of accelerators. A thoughtful life cycle management of components will minimise waste.”

In the case of astronomy research, Ref. [184] argues that emissions due to research infrastructure dominate the carbon footprint of an astronomer.
A number of initiatives have already been formed to consider the manifold technical challenges of improving the environmental sustainability of research infrastructure and associated technologies. Three examples are listed below, (for others see Section 1.2 and references therein):

- The International Committee for Future Accelerators (ICFA) has the specific panel “Sustainable Accelerators and Colliders” [185].
- Every 2 years since 2011, the Energy for Sustainable Science at Research Infrastructures (ESSRI) workshop [186] takes place.
- Innovation Fostering in Accelerator Science and Technology (I.FAST) [187] is an EU-project in which the “WP 11 – Sustainable concepts and technologies” is aimed to increase sustainability. The current participating institutes are CERN, DESY in Germany, the European Spallation Source (ESS) in Sweden, the GSI in Germany, the Paul Scherrer Institut (PSI) in Switzerland, and the Science and Technology Facilities Council (STFC) in the United Kingdom.

Environmental sustainability is also being considered by individual experiments, and Case Study 6.3 provides a summary of efforts by the LHCb collaboration to assess and mitigate the environmental impact of both the experiment and work practices, more generally.

In this section, we consider the following aspects of environmental sustainability in research infrastructure: life cycle assessment (LCA), (carbon) accounting, and technological developments, particularly in the context of accelerator technologies and detector gases. While the discussions of technological developments provide concrete examples, the primary focus of this section is the need for critical life cycle analysis for all research infrastructure projects to assess and limit their environmental impacts. The impacts of mining and processing of materials is also considered in Section 7.1, wherein complementary aspects of the LCA are also discussed.
Recommendations — Research Infrastructure and Technology

Individual actions:
- Seek out new innovations and best practice.
- Rethink how the impact of frequently-used equipment can be reduced, and reduce "over-design" by reassessing safety factors and other margins to reduce resource consumption.
- Read section on resources and waste (Section 7).

Further group actions:
- Ensure that environmental sustainability is an essential consideration at all stages of projects, from initial proposal, design, review and approval, to assembly, commissioning, operation, maintenance, decommissioning and removal, using life cycle assessment and related tools.
- Engage with industrial partners who exemplify best practice and sustainable approaches.
- Appoint a dedicated sustainability officer to oversee project development, and institute regular meetings with a focus on environmental sustainability.

Further institutional actions:
- Critically assess the environmental impact of materials, construction and the operational life cycle as an integral part of the design phase for all new infrastructure.
- Provide training opportunities, required tools and technical support to assess and improve the environmental sustainability of project life cycles.
- Recognise and reward innovations that minimise negative environmental impacts, regardless of revenue.
- Promote knowledge exchange on sustainability initiatives between groups and institutions, including decision-makers, designers and operators of projects, setups and infrastructure.
6.1 Accounting and Reporting

The methodology of a life cycle assessment can be used to analyse the environmental impact of resources used to build, run and decommission an accelerator, observatory or experiment, see Section 7.1.2 for further details. Such assessments have already been undertaken by a number of facilities, including:

- The European Southern Observatory (ESO) [188].
- The Giant Radio Array for Neutrino Detection (GRAND) Project, a multi-decade astrophysics experiment [189] — This led to a full issue of the Nature Astronomy Journal on climate change [190].
- The Relativistic Ultrafast Electron Diffraction and Imaging (RUEDI) facility at STFC Daresbury Laboratory [191].
- The Compact Linear Collider (CLIC) is planning to conduct an assessment [192].
- The ISIS-II project, the next generation of the ISIS neutron and muon source, is planning to conduct life cycle analyses for the project and various design options [193].

There is currently limited availability of data on estimated emissions and resources consumption for basic research infrastructure, and, where it is available, its presentation is not standardised. This makes overall assessments of sustainability and comparisons of individual technologies challenging. Implementation of effective life cycle assessment across the HECAP+community could provide the impetus for standardised reporting that will provide the data needed for ongoing assessment of current and future technologies and research infrastructure projects, such as any future collider concept (see Case Study 6.1).

See Best Practice 6.1 for a summary of life cycle assessment for a silicon wafer used in particle detectors, summarised from the ProBas library for life cycle assessment [194].

The labos1point5 working group has proposed a standardised carbon accounting procedure and associated assessment tool for research laboratories. This programme is described in detail in Best Practice 6.2.
Best Practice 6.1: Life cycle data for a silicon wafer

The ecological impacts of a 1 cm2 silicon wafer (thickness 775 μm, diameter 300 mm, weight 0.128 kg) as identified in 2000, are summarised in Table 6.1 [194].

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Quantity</th>
<th>Outputs</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen chloride HCl (hydrochloric acid)</td>
<td>0.00675 kg</td>
<td>Co-products: Si in other co-products</td>
<td>0.000286 kg</td>
</tr>
<tr>
<td>Graphite (as electrode material)</td>
<td>0.000163 kg</td>
<td>Co-products: Silicon tetrachloride</td>
<td>0.00415 kg</td>
</tr>
<tr>
<td>Wood chips</td>
<td>0.00183 kg</td>
<td>Co-products: Si residues for solar cells</td>
<td>65.2 × 10$^{-6}$</td>
</tr>
<tr>
<td>Petroleum coke</td>
<td>0.000597 kg</td>
<td>Polished silicon wafer</td>
<td>1 cm2</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.00486 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>0.385 kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry wood</td>
<td>0.00398 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air emissions</th>
<th>Quantity</th>
<th>Discharge to Water</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$</td>
<td>68.8 × 10$^{-6}$ kg</td>
<td>Metal chlorides</td>
<td>0.000787 kg</td>
</tr>
<tr>
<td>CO</td>
<td>0.000167 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>0.00833 kg</td>
<td>Waste</td>
<td>Quantity</td>
</tr>
<tr>
<td>Ethane</td>
<td>29 × 10$^{-6}$ kg</td>
<td>SiO$_2$</td>
<td>16.3 × 10$^{-6}$ kg</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>0.00188 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>85.1 × 10$^{-6}$ kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>13.8 × 10$^{-6}$ kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate matter</td>
<td>0.000201 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO$_2$</td>
<td>34.4 × 10$^{-6}$ kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.000125 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1: Inputs, outputs and emissions of silicon wafer production [194].

Case Study 6.1: Sustainability of Future Colliders

The future of HEP includes decisions on Future Collider Facilities to be built. Figure 6.1 compares the energy needs of Future electron-positron (e$^+$e$^-$) Colliders. The projected grid power during operation is given, including for
the laboratory, computer center and detector.

![Figure 6.1](image)

Figure 6.1: Site power required for proposed electron-positron (e^+e^-) collider projects at different center-of-mass energies, compared to the power consumption of CERN and LHC in 2022 [195].

The environmental sustainability of future facilities will become an increasingly important and heavily scrutinised factor in the decision making process about which, if any, facility should be built. The life cycle assessment for such facilities is extremely complex, and must cover not only the accelerator and the detectors, but also the civil engineering, such as tunnels and caverns, buildings infrastructure, and computing needs. The impact of construction, then deconstruction (except for the tunnel) and disposal (including activated materials, which may constitute a radiation hazard) after a few years is not negligible.

The evaluation of the CO$_2$ footprint due to the electricity consumption of a future collider is particularly challenging, since any estimate relies heavily on assumptions about future electricity mix. A conservative estimate might be given based on the current CO$_2$ footprint for electrical energy, under the assumption that the grid will be decarbonised — indeed it has to be to meet the world’s climate goals — by the time any future collider is commissioned. However, there is the opportunity to adapt to potential sources of renewable energy (see also Section 3) in the design stages, and to go beyond arguments of “electrical effectiveness” based on scientific benchmarks, such as kWh/Higgs or kWh/luminosity compared to the required connected power.
Best Practice 6.2: Standardised accounting of the carbon footprint of French research institutions: labos1point5

Laboratoires de recherche, loosely translated as research labs, are the entities around which most of French research is organised. They enjoy a relevant degree of autonomy, including aspects such as scientific goals and experimental designs. Access to research facilities, as well as a fraction of the annual budget is also managed at the lab scale. Hence, this makes it a relevant scale to tackle the question of the carbon footprint of academic research.

This has motivated the creation of the *labos1point5* working group (*Groupement De Recherche*, GDR),\(^a\) gathering an interdisciplinary team of engineers and researchers from various research fields in France. One of the main outputs of this collaboration is the *GES 1point5*,\(^b\) a standardised online tool for the accounting of the carbon footprint of French research labs. What follows is a brief summary of the latter. We refer to Ref. [155] for a publication describing it. Further information can be found on the website of the labos1point5 collaboration [196]. The tool itself is available at [197], while the open source code is hosted at [198]. The GDR labos1point5 is also active in helping labs in their transition to a lower footprint, in developing new ways of teaching climate and ecological aspects to students, as well as of communicating to the general public. Finally, there are teams dedicated to the reflection on the role of science in the climate crisis, and on fostering collaboration between arts and science in this context.

As explained in Ref. [155], one of the main motivations for the creation of the GES 1point5 tool was the difficulty in aggregating or comparing the results of the many existing studies in the literature on the carbon footprint of academic research. This difficulty was caused by the sensitivity of the footprint to the applied methodology, which made comparisons extremely challenging, since discrepancies in results could not be disentangled from methodological differences. The creation of the GES 1point5 was then intended to provide a tool specifically designed to estimate the carbon footprint of research with a transparent and accessible methodology and a database of carbon footprints assessed with the same methodology to enable a robust comparison of research carbon footprints across institutions, contexts or disciplines.

More specifically, GES 1point5 allows research labs to estimate their yearly emissions — as of February 15, 2023, 628 laboratories have compiled 1,140 yearly carbon footprint determinations [196]. Currently, GES 1point5 can
estimate GHG emissions due to the energy consumption and refrigerant gases of the laboratories’ buildings, those attributed to the purchase of their digital devices, and to computing, commuting and professional travel, as well as the associated uncertainties. A module estimating emissions from consumables purchases has recently been added. In all cases, the estimation is based upon its established standardised methodology, and the database of emission factors, and turns out to be relatively straightforward for the end user. \(^c\) To give an example, commuting emissions are estimated by gathering data through an anonymised survey sent to staff members, which can be answered in less than five minutes. For each specified commute (up to two different ones per week can be entered) GES, 1point5 multiplies the distance traveled via each means of transportation by the specific emission factor from its database. These are collected in Figure 5.1 in Section 5. The underlying routines are available at [199] for everyone to test their commutes; similarly, those used in the determination of professional travel emissions are available at [200] and those for purchases at [201].

Once the emissions have been estimated, GES 1point5 presents the results through its graphical interface, highlighting the main drivers of the carbon footprint. Finally, emissions reduction actions that may be undertaken after the evaluation of the footprint can be evaluated in the subsequent years, thanks to the reliance on a standardised protocol. The latter also allows the aforementioned aggregation and comparison of GES 1point5-based carbon footprints.

As stated in Ref. [155], while some aspects of GES 1point5 are specific to the context of French research, the tool may be reused in research centers elsewhere, provided the necessary adjustments — e.g., carbon intensity of the grid — are taken. A French- and an English-language version of GES 1point5 are built into the current version to ease deployment in any country; contacts with several institutions outside France have been established.

\(^a\)“1point5” refers to the warming limit of the Paris accord

\(^b\)“GES” is the French acronym for greenhouse gases.

\(^c\)In the case of professional travel, a feature has been added to the internal management software of the French National Centre for Scientific Research (CNRS) that can output the travel data — origin, destination, means of transportation, etc. — for a given year in a ready-for-GES 1point5 format, sparing the end user tedious data entry/conversion.

6.2 Technological Improvements

There are ongoing efforts across the HECAP+community to reduce the environmental impacts of the technologies implied in research facilities.
Two examples in the case of accelerator technologies are provided in Best Practice 6.3 and Case Study 6.2, namely energy-recovery accelerators and plasma wakefield acceleration technologies. Further details of efforts by the LHCb collaboration are included in Case Study 6.3. A detailed discussion of the impact of detector gases is provided in the following subsection.

Best Practice 6.3: Realization of a multi-turn energy-recovery accelerator

Edited contribution from Tetyana Galatyuk.

The operation of particle accelerator facilities is inherently resource-intensive, and thus poses a challenge to sustainability. In line with acknowledging our responsibility for sustainable usage of energy resources, the development, establishment, and demonstration of a scalable multi-turn Energy Recovery Linac (ERL) with efficient energy recycling was implemented at the S-DALINAC accelerator at TU Darmstadt, Germany [202]. An efficient energy-recycling in multi-turn operation with a saving of up to 87% of the beam power-consumption in the main LINAC has been recently demonstrated. This result, together with further developments on multi-turn ERLs is a promising basis for future high-power beams that truly support sustainability aspects. These examples include ER@CEBAF in the USA [203]; MESA ERL in Germany [204]; International PERLE Collaboration [205, 206]; CBETA, the Cornell-BNL ERL Test Accelerator [207]; for an overview, see Refs. [208, 209].

Case Study 6.2: Sustainability of plasma wakefield acceleration technology for future accelerators

Edited contribution from Nikola Crnković.

A promising technology which would reduce both the material and energy cost of accelerating particles, and hence improve its environmental sustainability, is wakefield acceleration [210]. These use laser pulses (in the case of laser wakefield accelerators), or particle beam bunches (for plasma wakefield accelerators, PWFAs) as the driver to accelerate plasma electrons, creating ion cavities. This creates an electric field that pulls electrons back to their original positions, which they overshoot, creating waves in the plasma, known as the wakefield. These plasma waves can accelerate electrons by transferring energy from the drive beam to electrons by putting electrons just behind the drive beam. Wakefield technology routinely gives acceleration gains of 10–100.
GeV/m \[210\], thus resulting in a significant reduction of the resources required (materials, energy) to build particle accelerators. For example, accelerating electrons to 1 TeV of energy using PWFA would require, e.g., only a 21 km-long particle accelerator, while CLIC technology needs 52 km \[211\]. Furthermore, there are indications that PWFA is more power efficient at high energies than conventional accelerator technology \[211\].

6.2.1 Gases

Significant quantities of GHGs are used for particle detection technologies and cooling systems across HECAP+. As such they are used as a resource, but can escape the detector volume into the atmosphere and turn into potentially dangerous waste gases. Table 6.2 lists a number of GHGs, their chemical formulae, atmospheric lifetimes and global warming potentials (GWP). All of these gases are used either for cooling purpose or as active ingredients in gaseous detector systems, where they are often added to noble gases to improve detector properties, such as drift charge velocities or diffusion coefficients \[212\].

Whilst gases are used in a variety of detectors, such as time projection chambers, ring-imaging Cherenkov detectors or multi-wire proportional chambers, the main offenders in ecological terms are the detectors used in the muon systems of the LHC experiments, specifically resistive plate chambers (RPCs). This is due to their large areas of around \(7,000 \text{ m}^2\) in total for both the CMS and ATLAS muon systems, and the gas mixtures used to cope with the large event rates at the LHC, which often feature HFC-134a as main component.

As shown in Figure 1.4, Scope 1 direct emissions made up about 25% of CERN's carbon footprint in 2019. During the LHC Run 2 in 2018, it was about a factor of two larger. 92% of these Scope 1 emissions are related to the activities of the large LHC experiments \[1, 213\]. CERN and the LHC experiments are actively working on reducing this impact by continuously repairing gas leaks that are one of the main reasons for the large amount of waste gas. In addition, CERN has tested an HFC-134a recuperation plant showing an efficiency of close to 85%, which is to be installed in the detectors to reduce the environmental impact \[213\], and is actively researching alternative gas mixtures \[214\]. Future detector projects still plan to use RPCs (DUNE covering an area of about \(860 \text{ m}^2\) \[215\] and SHIP with about \(100 \text{ m}^2\) \[216\]) but are testing their prototypes also with alternative gas mixtures \[217\].

The gases responsible for about 80% of CERN's Scope 1 direct annual GHG
Table 6.2: Environmental impact associated with GHGs, from Ref. [218], which also forms the source for the calculations in the CERN environmental report and the EU regulations described in Ref. [219].

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical Formula</th>
<th>Lifetime [years]</th>
<th>Global warming potential (GWP) [100-yr time horizon]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>CO$_2$</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Dimethylether</td>
<td>CH$_3$OCH$_3$</td>
<td>0.015</td>
<td>1</td>
</tr>
<tr>
<td>Methane</td>
<td>CH$_4$</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>Sulphur hexafluoride</td>
<td>SF$_6$</td>
<td>3,200</td>
<td>22,800</td>
</tr>
</tbody>
</table>

Hydrofluorocarbons (HFCs)

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical Formula</th>
<th>Lifetime [years]</th>
<th>Global warming potential [100-yr time horizon]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFC-23</td>
<td>CHF$_3$</td>
<td>270</td>
<td>14,800</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>C$_2$H$_2$F$_4$</td>
<td>14</td>
<td>1,430</td>
</tr>
</tbody>
</table>

Perfluorocarbons (PFCs)

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical Formula</th>
<th>Lifetime [years]</th>
<th>Global warming potential [100-yr time horizon]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC-14</td>
<td>CF$_4$</td>
<td>50,000</td>
<td>7,390</td>
</tr>
<tr>
<td>PFC-116</td>
<td>C$_2$F$_6$</td>
<td>10,000</td>
<td>12,200</td>
</tr>
<tr>
<td>PFC-218</td>
<td>C$_3$F$_8$</td>
<td>2,600</td>
<td>8,830</td>
</tr>
<tr>
<td>PFC-3-1-10</td>
<td>C4F${19}$</td>
<td>2,600</td>
<td>8,860</td>
</tr>
<tr>
<td>PFC-5-1-14</td>
<td>C6F${14}$</td>
<td>3,200</td>
<td>9,300</td>
</tr>
</tbody>
</table>

emissions are perfluorocarbons (PFC), hydrofluorocarbons (HFC) and sulphur hexafluoride (SF$_6$) in particle detection, and HFCs and PFCs for detector cooling. To put the emissions into context, CERN's PFC emissions are roughly of the same size as the Swiss emissions [229] and only reduce by about 30% when there is no LHC run. For 2017 and 2018 (during LHC data taking), CERN's SF$_6$ emissions are about 5% of Switzerland's, and of the same size as those of Luxembourg or Latvia [221]. The HFC emissions are 6% of the Swiss emissions, about twice the size of Luxembourg's and a bit less than half of Latvia's emissions, again looking at 2017–2018 data [222]. During 2020–2021, when the LHC, and more importantly its experiments, shutdown for upgrades and maintenance, SF$_6$ emissions were down to about a third, while HFC emissions were down to 25%. All of these so-called F-gases have EU supply restrictions imposed on them since 2015 [219], effectively phasing out their usage. A 2022 regulation proposal aims to extend EU regulations, e.g., to reduce HFC usage down to 2.4% by 2048 compared to 2015 levels [223]. An additional significant factor in this proposal is the removal of certain sector exemptions for HFC usage, such as research. All of this could significantly impact the availability and cost of F-gases in the future and therefore affect the HECAP+ community, which should be reflected in the plans for ongoing and future experiments. Even independent of these EU regulations, the HECAP+ community should work with highest priority on abolishing problematic GHGs in existing and future detectors. Ideally, this would consist of replacing them with non-GHGs, or gases with low
GWP, or gasless detector technology.

For cooling of the LHC-experiments, concrete plans are in place to upgrade the future detectors (Phase-II Upgrades) to CO\(_2\) cooling, reducing the total Scope-1 carbon footprint of the experiments during HL-LHC exploitation significantly [224, 225].

Solutions to the problem of gas use for particle detection are less straightforward. In some scenarios, low-GWP gases used as replacements for industrial applications are not suitable for detector applications and, as such, studies for alternative gases are currently ongoing. The difficulty in finding replacement gases originates from having to satisfy several factors: safety (non-flammable and low toxicity) and environmental impact (minimising GWP), while maintaining their detector performance (including preventing the ageing of the detectors, ensuring good quenching\(^\text{15}\) and being radiation-hard) [27].

Current gas mixture alternatives for particle detection are centred around tetrafluoropropene (chemical formula C\(_3\)H\(_2\)F\(_4\) and industrially referred to as HFO-1234ze/R-1234ze). The mixture has zero ozone-depletion potential and a global warming potential below 1, over a span of 100 years. Simulations of RPCs that operate with various gas mixtures, which include R-1234ze, have shown encouraging results, although further studies are still required [226, 227].

Long term, it is crucial to design future detector systems with gas GWP in mind. Consequently, it is essential that current state-of-the-art and future detectors are compatible with this and, if not, R&D is aimed at reducing the GHG emissions of such systems.

Case Study 6.3: LHCb and sustainability

Edited from Framework TDR for the LHCb Upgrade II [228]: Opportunities in flavour physics, and beyond, in the HL-LHC era, edited extracts from the U2 FDTR chapter on environmental impacts of the project, as contributed by Chris Parkes.

In a world with increasing demand on limited resources and undergoing climate change, the LHCb collaboration feels a responsibility to consider

\(^{15}\)Quenching is the prevention of secondary electron avalanche (and thus signals) caused by, e.g., photon emissions of the positive ions in the gas when recombining with electrons. As the positive ions travel more slowly through the gas detectors, these secondary signals happen after the primary signal from the electrons are registered and cause significant dead-times, when the detector is not responsive to new signals.
energy consumption, sustainability and efficiency when discussing our scientific proposals. To this end the Framework Technical Design Report of the next-generation LHCb Upgrade II experiment [228] has included a dedicated chapter on these considerations analysing the current Upgrade I system and indicating directions for future investigation. This section reports some of the main elements.

The 2020 update of the European Strategy for Particle Physics [229] reports: “The environmental impact of particle physics activities should continue to be carefully studied and minimised. A detailed plan for the minimisation of environmental impact and for the saving and re-use of energy should be part of the approval process for any major project. Alternatives to travel should be explored and encouraged.” As one of the major experimental infrastructures operating at the LHC, our environmental protection strategy should be made in coordination with CERN guidelines, as described in the first CERN environment report [213].

CERN has a formal objective to reduce direct emissions (“Scope 1”) by 28% by the end of 2024. These are dominated by the activities of the LHC experiments, and in particular by the use of fluorinated gases for particle detection and detector cooling purposes, as shown in Figure 6.2. These emissions have to be carefully considered in the operation of the Upgrade I detector and in the design of its future upgrade. Other relevant aspects of the environmental impact of our project are the power consumption of the experimental infrastructure (indirect emissions, “Scope 2”), the impact of digital technologies, and travel of the members of the collaboration. Figure 6.3 shows the relative contribution of each of these sources to the CO₂ equivalent footprint of the experiment operations expected during Run 3.
Figure 6.2: CERN Scope 1 (direct) and Scope 2 (indirect, by electricity consumption) emissions for 2017 and 2018, in CO₂ equivalent tonnes, by category; “other” includes air conditioning, emergency generators and CERN vehicle fleet fuel consumption (reproduced from Ref. [213]). ‘Budapest’ refers to electricity use at the (now inactive) Wigner data centre in Hungary.

Figure 6.3: Expected relative contribution to CO₂ equivalent emissions from LHCb operations in Run 3. The total emissions are estimated to be 4,400 tonnes CO₂ equivalent per annum.

Direct emissions Direct emissions from LHCb are dominated by losses of gases with sizeable global warming potential (GWP). The GWP is the heat
absorbed by a GHG in the atmosphere as a multiple of the same mass of \(\text{CO}_2 \). It thus allows conversion into \(\text{CO}_2 \) equivalent emissions. As some gases break down, they have time-dependent values, and we use the 100 year value \([230]\). The gases are utilised in LHCb in detector cooling systems and in the detection systems. Improvements made in the cooling systems of LHCb mean that emissions are now dominated by the detection system in Upgrade I. All systems are closed, with emissions being the result of losses.

In the original LHCb detector of Run 1 and 2, the gas \(\text{C}_6\text{F}_{14} \) (GWP 7910) was used in cooling plants. For upgrade I, “Novec 649” (GWP 1) is planned to be used, along with increased use of low-impact \(\text{CO}_2 \) based cooling. For Upgrade II, lower operating temperatures are foreseen, and the GWP of the cooling systems will be considered.

In the detector systems, the Ring Imaging Cherenkov Systems (RICH1 and 2) and Muon systems of Upgrade I use GHGs. The RICH2 system currently uses \(\text{CF}_4 \) (GWP 6630) and RICH1 \(\text{C}_4\text{F}_{10} \) (GWP 9200) radiators. R&D will be pursued for Upgrade II on alternative gases, RICH2 is looking at \(\text{CO}_2 \) use, where a test has already been performed, and leakless systems. Significant effort has been made to minimise leaks. In the original LHCb detector, GEM detectors (gas electron multiplier detectors) were utilised in a part of the muon system. The removal of these for Upgrade I reduces the detector system emissions by 40%. Recirculating systems are used throughout. The study of alternative gas mixture will be conducted to reduce the \(\text{CF}_4 \) consumption in the proposed future muon systems.

The \(\text{CO}_2 \) equivalent emissions expected in Run 3 are shown in Figure 6.4. These are taken from the average values of annual usage during Run 2 for the detector systems that are still present, or that have been replaced with similar systems for Run 3.
Figure 6.4: Expected Scope 1 (direct) emissions in CO₂ equivalent tonnes from the LHCb detector gas systems in Run 3. The data is taken from the annual emissions of the systems, or predecessors, during Run 2.

Power consumption CERN peak power demand, with the full accelerator chain running, is about 180 MW, which brings the total annual energy consumption to 1.2 TWh. This very large energy demand is partially mitigated by the fact that the electricity procurement is mainly from France, whose production capacity is 87.9% carbon-free (2017-figures). This keeps the contribution from the electrical power to the total CERN emission budget below 20%, as shown in Figure 6.2. Nevertheless, guided by the Energy Management Panel, EMP, CERN is spending a large effort to improve energy efficiency, with special focus on the accelerator sector. As an example, in the transition to the HL-LHC, with a tenfold increase in luminosity, the Organization’s immediate priority is to limit the increase in energy consumption to 5% up to the end of 2024.

LHCb during a normal data taking period of Run 2 had a peak power demand stably around 5.5 MW, of which 4.6 MW was from the experiment dipole magnet, and the rest was from the detector electronics and the online computing farm. The Run 3 expectation is for an increase of ~1.5 MW due to the increased demand of data processing power, which is to be compared to the five-fold increase in luminosity. For Run 5 and beyond, the contribution of online computing is expected to increase substantially, as a consequence of a further order of magnitude increase in the data throughput.

For the power dissipated by the LHCb magnet, an important mitigation has been implemented very recently by CERN with the installation of a heat-recovery
plant at the experimental site. This is intended to use the hot water produced by the magnet and the machine cooling systems to heat a new residential area in the town of Ferney-Voltaire next to the LHCb site. Thanks to this project, up to 8000 people’s homes will be heated at a lower cost and with reduced CO$_2$ emissions, corresponding to $\sim 2.5\%$ of the total CERN emission budget per year.

Digital technologies
The power consumption of the online computing farm at LHCb has been about 530 kW on average during Run 2 of the LHC. To cope with the significantly increased computing needs after Upgrade I, a new data centre has recently been installed at Point 8 and the power consumption for computing is going to increase to 2000 kW for the upcoming data taking periods. The new computing data centre at Point 8 is located in a surface building and for practical reasons could not be included in the heat recovery project discussed in Sec. 6.3 above. However, great care has been put into the design to optimise its power efficiency, for example by implementing a state-of-the-art indirect free air cooling system with adiabatic assist [232]. A PUE of better than 1.08 has been achieved for the new data centre at Point 8, a value that compares favourably with other large computing centres [233].

While it does not seem feasible to further improve the PUE of the data centre, energy savings could potentially be achieved by adjusting the operating mode to the actual computing needs at a given point in time. Significant improvements in energy efficiency can be achieved by rewriting software so that it can efficiently exploit today’s highly parallel computing architectures. LHCb has been doing this in preparation for Run 3 data taking and the impact of these activities on the energy efficiency of our software has been documented in [234]. In total the energy efficiency of HLT1 (High Level Trigger 1) software has been improved by a factor $4.8 \times$ on CPUs, with the improvements coming in roughly equal parts from physics optimizations and the rewrite of the underlying software framework. A further improvement in energy efficiency can also be achieved by porting suitable algorithms from CPUs to more efficient technologies such as GPUs, field programmable gate arrays (FPGAs) or even custom-made application specific integration circuits (ASICs). LHCb has demonstrated this with the Allen project [235], which implemented HLT1 on GPUs, leading to an overall improvement in energy efficiency of up to 19 times compared to the Run 2 architecture. These improvements require significant effort and investment, above all in the training and retention of scientists able to effectively program across a range of modern computing architectures.

The energy efficiency of the underlying computer hardware has also improved.
substantially over time. For example, the AMD 7502 CPUs, which were evaluated as candidates for LHCb's Run 3 HLT, are 2.6 times more energy efficient than the benchmark E5-2630 Xeon CPUs used by LHCb during Run 2. Within a given computing architecture, energy savings can also be achieved by purchasing more expensive, higher quality hardware. As an example from the world of CPU, the more expensive AMD 7742 provides twice the number of CPU cores and threads as the cheaper AMD 7502, while its specified power consumption is only 25% higher. The energy consumption and carbon footprint from data transfer, data storage and offline computing are much harder to assess than those for online computing, due to the distributed nature of the computing model with data centres and users distributed over many different countries. The GRAND collaboration has performed pioneering work in this direction.

Mobility As an international collaboration operating in an international field of research, travel is an intrinsic part of how LHCb operates. We have estimated the environmental impact of travel in order to attend LHCb collaboration meetings and international conferences. We have not taken into account local commuter travel or travel related to on-site work at LHCb, such as shifts, although the latter is probably significant.

The impact of travel per participant for a typical LHCb collaboration week, pre-pandemic, corresponded to around 0.5 tCO\(_2\)e with the average LHCb week in 2019 leading to travel-emissions of \(\sim 180\) tCO\(_2\)e. The Speakers' Bureau database provides a complete record of all LHCb conference talks, allowing us to estimate the environmental impact in terms of tCO\(_2\)e per year. LHCb weeks and conference travel contribute a total of approximately 1,000 tCO\(_2\)e per annum, a similar carbon footprint to the Run 3 experiment's projected electricity use due to online computing and the magnet (French energy mix). LHCb weeks contribute about three times as much to LHCb's carbon footprint as conference travel. The carbon footprint of virtual conference attendance is calculated according to the life cycle and operating costs of endpoint devices estimates in Ref. [239], and is small.

LHCb, in common with other High Energy Physics collaborations, had extensive experience with virtual meetings before COVID, and videoconferencing technology has already helped to reduce travel-related emissions over the past decade. However, the pandemic, as well as recent improvements to the videoconferencing software infrastructure, have shown us ways in which the organisation of virtual meetings can be improved and made more inclusive. At
the same time the pandemic has also reminded us of the ongoing importance of in-person interaction, not least to avoid fracturing the collaboration between those who can regularly travel to CERN in eco-friendly ways and those who cannot. The collaboration has only just started to navigate this tension but is actively exploring ways to reduce its travel-related environmental impact.

\[a\]It was argued in Section 3 that French energy production is part of the common EU market and that it would therefore be more appropriate to use a conversion factor for an EU mix, which is about a factor of five higher than that for France [231].
7 Resources and Waste

Half of the world’s GHG emissions, and over 90% of global water stress and biodiversity loss events, are due to the extraction and processing of raw materials [240]. Although most extracted materials are slated for the energy or agriculture sectors, the small fraction associated with consumption of goods and services is responsible for 18% of EU emissions [240]. Mitigating the climate impacts of the extraction, processing and trade of raw materials is a priority for the resilience of the EU [240], and it should also be a priority for the world climate agenda.

The generation of waste is a direct consequence of material consumption, and is aggravated by constraints in production, distribution, usage and repair, and disposal or recycling of consumables. Waste has severe impacts on life on land and at sea, often destabilizing local ecosystems. It also damages the global ecosystem by contributing to climate change. Accumulations and inefficient disposal of waste products can result in pollution of ground water and air, thus directly affecting the health of individuals and communities at a large cost to society in terms of disease burden and lives lost.

In an attempt to curb the footprint of waste generation, the concept of a circular economy has been proposed [241]. Any such proposal must be established in parallel with a will to reduce waste at source through sustainable procurement, repair and reuse, and used only as a transitional measure. Even a fully circular economy has some dissipation, and signatures of this energy waste need to be independently addressed and reduced [242–244].

Procurement accounts for almost two-thirds of annual emissions at CERN [245], with a GHG footprint of the same order as its direct emissions in 2018, when the LHC was running [1]. Although not yet fully included in reporting by other HECAP+ institutions, the environmental cost of procurement is likely proportionately large elsewhere. Maximising the sustainability of the use cycle of resources should be a priority of the HECAP+ community.

This section covers sustainable sourcing in Section 7.1, and reduction and treatment of waste, including E-waste, in Section 7.2. The use of materials in research infrastructure is also discussed in Section 6.
Recommendations — Resources and Waste

Individual actions:
- Limit purchases and consider environmental credentials such as repairability and recyclability of products in purchasing decisions.
- Service appliances regularly; share, repair, reuse and refurbish to minimise waste; sort and recycle.
- Read the sections on computing (Section 2), energy (Section 3), food (Section 4), and research infrastructure and technology (Section 6).

Further group actions:
- Adopt life cycle assessments and associated tools to assess environmental impact of all activities.
- Institute sustainable purchasing, usage and end-of-life policies in the management of group consumables, office supplies and single-use plastics e.g., in conference events (see also Section 7.2.3 and Best Practice 7.4).

Further institutional actions:
- Prioritise suppliers instituting sustainable sourcing and operating policies, with a particular focus on the raw materials processing stage (see Best Practice 7.1) and with the aim of creating demand for recycled (secondary) raw materials.
- Provide an institutional pool of infrequently-used equipment to avoid redundancy in purchasing.
- Proceduralise and prioritise repair of equipment, and enable through provision of tools and know-how.
- Assess waste generation and management for the design, operation and decommissioning of IT and infrastructure projects by right-sizing needs, establishing specific treatment channels for all waste categories, and setting recycling targets that include the recycling of all construction waste, see, e.g., Best Practice 7.3.
7.1 Resources

HECAP+ research can be resource-intensive, particularly in the building and maintenance of the often large experiments that drive progress in our fields. These resources have an environmental impact over their entire life cycle, due to extraction of the raw materials used in their manufacture, their production and use, and their disposal once they become unusable or obsolete. Of these, the raw materials processing stage has been highlighted as having the greatest potential for emissions reduction (see, e.g., Figure 2 of Ref. [240]).

The extraction of raw materials has important and extensive environmental costs [246], mostly associated with the mining industry. Acid mine drainage is the overriding problem and is a serious threat to water resources. It results from water flow over ore creating sulphuric acid and leaching heavy metals from surrounding rock, thus contaminating groundwater and soil. Mining operations can also deplete water resources, particularly in regions of limited water supply, severely restricting the availability of water to local consumers. Fine particles and dust produced during mining operations and dispersed by winds affect air quality, and mining and its infrastructure leads to loss of agricultural land and even entire ecosystems through contamination or destruction of soil cover. Mining is the world's largest producer of waste, with copper, zinc, bauxite and nickel mining generating the largest ratios of waste to mined metal. Disposal or storage of tailings, the waste products remaining after the extraction of valuable material from ore, is a major problem. These can be radioactive, and are sometimes illegally disposed of directly into rivers or seas. Even when stored ‘responsibly’ in tailings dams, incorrect geological siting of these dams, in tectonically active zones or regions of high rainfall, can lead to catastrophic loss of life and usable land [247].

Environmental sustainability aside, mining has a poor safety and human rights record [248], and is sometimes subject to dubious financing [249]. Mining of ‘conflict minerals’, such as tin, tungsten, tantalum and gold, used in mobile phones and other everyday products, are sometimes used to finance armed conflict [250].

Sustainability regulations, both externally imposed and voluntary, are slowly being incorporated into the raw materials supply chains (see, e.g., the Voluntary Principles on Security and Human Rights [251]), albeit slowly, and in an inconsistent and sometimes superficial manner [248, 252]. For examples of sustainability initiatives, in particular in relation to raw materials supply chains, see Best Practice 7.1.
An analysis of components used inside a smartphone and their impacts can be found in Ref. [253]. Smartphone manufacturer Fairphone, for instance, sustainably sourced 56% of 8 of the materials used in its phones in 2020, and have set a target of fair sourcing of 70% of 14 materials by 2023 [254].

A ranked list of mined metals by overall environmental impact can be found in Table 7.1. This table was taken from the EU Raw Materials Information System [255], with source data from Ref. [256]. Sourcing recycled metal from scrap produces significantly lower emissions. Secondary aluminium, for example, was reported by the European Aluminium Association to emit 95% fewer GHGs than primary production [240]. Other materials used in HECAP+ experiments (e.g., cobalt for magnets, rare earths for permanent magnets, niobium) are produced under very difficult conditions, with a high environmental or societal cost [257–259]. Formal discussions of their use and impact have already begun in the HECAP+ community, most recently at a workshop on Rare Earth Elements organised by I.FAST at DESY [260].

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Impact per kg</th>
<th>Impact global production</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Palladium</td>
<td>Iron</td>
</tr>
<tr>
<td>2</td>
<td>Rhodium</td>
<td>Chromium</td>
</tr>
<tr>
<td>3</td>
<td>Platinum</td>
<td>Aluminium</td>
</tr>
<tr>
<td>4</td>
<td>Gold</td>
<td>Nickel</td>
</tr>
<tr>
<td>5</td>
<td>Mercury</td>
<td>Copper</td>
</tr>
<tr>
<td>6</td>
<td>Uranium</td>
<td>Palladium</td>
</tr>
<tr>
<td>7</td>
<td>Silver</td>
<td>Gold</td>
</tr>
<tr>
<td>8</td>
<td>Indium</td>
<td>Zinc</td>
</tr>
<tr>
<td>9</td>
<td>Gallium</td>
<td>Uranium</td>
</tr>
<tr>
<td>10</td>
<td>Nickel</td>
<td>Silicon</td>
</tr>
</tbody>
</table>

Table 7.1: Environmental impact associated with primary metals, ranked by impact per kg, and total impact due to global production. Taken from Ref. [255], with material from Ref. [256].

7.1.1 Life cycle assessment

Best practices in sustainable use and disposal of resources begins with a life cycle assessment (LCA): a cradle-to-grave accounting of all the environmental impacts of a resource. As an example the ISO 14040 [261] and ISO 14044 [262] standards provide a systematic procedure for the analysis. Depending on the goal and scope of the analysis, the life cycle inventory comprises the quantification of all input and output flows. This includes raw
materials, consumables, energy, products, waste, emissions, and groundwater and soil contamination. There are online tools and auditing agencies who provide help with the analysis, see, e.g., Ref. [194]. For an LCA of a silicon wafer used in particle detectors, see Best Practice 6.1.

7.1.2 Sustainable sourcing

Purchasing policy can have a major impact on the environmental costs of procurement. The HECAP+ community should prioritise suppliers that implement sustainable thinking, sourcing, and operation. This could include voluntary provision of life cycle assessments for their products (see above), or certification of, e.g., proof of origin. Sustainability requirements on suppliers could also be incorporated into tenders and purchasing regulations, allowing these considerations to be weighed in tandem with cost in the tendering process. Since much of HECAP+ funding is public, purchasing regulations, which are influenced by funding agencies, an additional important stakeholder in this process, must be reassessed. For examples of best practice in sustainable procurement, see Best Practice 7.1. A strategic approach to sustainable purchasing has been outlined in ISO 20400 [263].

CERN is in the process of defining a new environmentally responsible procurement policy, to be implemented in 2023 [13]. Key measures being considered include requiring sustainability certification from suppliers, with a focus on those with highest potential to drive sustainability issues [13]. For further sustainable procurement and waste policies being explored by CERN, see Best Practice 7.2.

Best Practice 7.1: Sustainability in raw materials supply chains

Edited contribution from Enrico Cennini, IPT (Industry, Procurement and Knowledge Transfer), CERN, summarised from Ref. [240].

Sustainable procurement requires sustainability in all phases of the supply chain, from producers to processors and traders. Hallmarks of sustainability among suppliers include the following (with the relevant phase(s) shown in parentheses):

- Compliance with sustainability standards set and certified by non-profit, multi-stakeholder organizations. (Producers, processors, traders)
e.g., Aluminium Stewardship Initiative, Responsible Steel certification, Responsible Jewelry Council (precious metals, stones).

- Voluntary implementation of certified energy- and environmental-management systems, such as ISO 50001 and ISO 14001. (Producers, processors, traders)

- Setting of voluntary sustainability targets by sectoral industry associations. (Producers, processors, traders)

 e.g., steel-making industry and ammonia producers investigating low-carbon sources of hydrogen for imminent adoption.

- Demonstrable investment in technological solutions for improving energy efficiency of operations, such as employing ‘Best Available Techniques’ (BATs) and keeping to ‘Associated Environmental Performance Levels’ (BAT-AEPLs). (Producers, processors, traders)

 e.g., transition to lower carbon sources for power supply, implementation of ‘ventilation-on-demand’ (gold and potash mining); replacing diesel fleet with hybrid electric, innovative and energy efficient loading and haulage systems (mining); continuous monitoring and improvement of transportation methods.

- Requiring third-party verified sustainability certificates from upstream suppliers. (Processors, traders)

 e.g., some aluminium manufacturers; selected wood and copper processors’ business partner code of conduct encodes supplier sustainability requirements.

Best Practice 7.2: CERN sustainable procurement and waste policy

Edited contribution from Quentin Salvi, Waste Management Project Coordinator, CERN.

Avenues being actively explored by CERN to improve sustainability in procurement and waste include the following:

- Implementing a circular economy, both internally and externally.

- Knowledge-sharing with partners and the local authority.

- Consolidation of CERN equipment, behavioural change in industrial
• Optimisation of services based on CERN data.

• User-awareness.

7.2 Waste

Around 3% of global GHG emissions is due to solid waste disposal, the organic component of which decomposes in wastewater and landfills, producing methane and nitrous oxide [264]. This is despite a 60% decrease in the amount of waste landfilled in the EU in the past two decades, due partly to an increased legislative focus on alternative treatment methods, such as recycling and composting, as well as more widespread landfill gas recovery [265].

The fastest-growing portion of EU waste output is E-waste [266]: powered products with electrical components that are discarded into the waste stream. In addition to releasing hazardous chemicals into the environment, improperly treated E-waste contributes to global warming through failure to recuperate valuable mined materials, and direct release of GHGs including refrigerants (see Figure 7.1 for statistics on global E-waste generation and disposal in 2019). Moreover, E-waste can often be shipped illegally to developing countries without infrastructure for safe recycling [267, 268]. Exploding demand for digital devices, fuelled by their fast obsolescence and difficulty to repair, has also given rise to a boom in the mining industry. This boosts the economy in resource-rich countries, where working conditions are usually unsafe and unpleasant, and causes deforestation and pollution [268].

Increasing the life-span of consumer electronics through more comprehensive right-to-repair legislation is an integral part of the EU’s strategy for a circular economy [266, 269]. According to a 2018 European Commission study, however, the cost of repair was the most frequent reason consumers chose to replace four common household electrical and electronic goods [270]. Right-to-repair advocates are pushing for more comprehensive and far-reaching legislation, including policies that will empower consumers to make simple repairs themselves, as well as government incentives to repair through, e.g., financial aid [271]. A trial scheme for the latter has already been implemented in France [272]. Unfortunately, today’s legislation is formulated piecemeal and is slow to take effect. In addition to instituting sustainable purchasing, use and de-inventorising/disposal policies for electrical and electronic goods (see Recommendations), HECAP+ institutions could encourage the sustainable use
to reduce the product’s flammability, appearing, for example, in outer casings of
appliances (see Annex 2 for details on the methodology). In particular, BFR are used in appliances
Flame Retardants) arise from the unaccounted flows of e-waste generated in 2019
(HCFCs), and flame retardants. Approximately 71 kt of plastic containing BFR (Brominated
or lead and chemicals such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons
emissions in 2019 (see Annex 2 for details on the methodology).
and copper and comparing emissions resulting from their use as virgin raw materials or
raw materials would become available for recycling. Focusing only on iron, aluminium,
material value of $10 billion USD can be recovered from e-waste, and 4 Mt of secondary

Figure 7.1: The generation of global E-waste in 2019. About 83% of E-waste goes
undocumented, highlighting the importance of its re-use and recycling. Figure reused from
Ref. [273] under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike
3.0 IGO (CC BY-NC-SA 3.0 IGO) license.

of personal electronic devices by making repair equipment freely available, with
guidance from experts on a volunteer basis.

Best Practice 7.3: Re-purposing shielding blocks

Initially, the heavy concrete blocks in the HERA halls had served as protection
against radiation. Five hundred of these discarded shielding blocks were stored,
unused, for years on the DESY campus in Hamburg, Germany. 6,000 tonnes
of this heavy concrete were shredded in 2020. The concrete rubble is already
being used as a new building material for campus renovations [109].

7.2.1 Plastic Waste

Plastic is a versatile product, efficient, cheap, stable, and infinitely mouldable.
Its unique properties have resulted in our increasing reliance on it over decades,
making it very hard to live without.

GHG emissions from production, use and disposal of conventional
(fossil-fuel-based) plastics is significant, and growing. It is expected to increase
to ~2.1 tCO$_2$e per capita by 2040, accounting for almost 20% of the global
carbon budget [274]. Less than one tenth of plastic waste produced to date
has been recycled, with the remainder being landfilled or incinerated [274].
This plastic waste contaminates the natural environment. It is slow to degrade
(biodegradable plastics included), releasing potentially harmful chemicals
into the environment in the process, eventually breaking down to micro- and
nano-plastic particles that infiltrate the food chain. Microplastics are also found in waste water, due to washing of synthetic textiles, and in cosmetic and personal care products [275]. The health impacts of ingested plastic waste are not yet completely understood, but they are thought to alter metabolic pathways and hormone signalling in animals.

A simple ban on single-use plastics, and plastics that are not at least 99% recyclable would greatly limit microplastic pollution.

7.2.2 Conference Waste

The amount of waste generated at conferences can be significantly reduced by replacing printed timetables and welcome packs with a well-designed conference app, see, e.g., Whova [276], and keeping conference gifts digital (e.g., e-vouchers/discounts for local restaurants or activities). Sustainable stationery should be distributed on a need-only basis, and banners, posters and name tags made plastic-free and reusable. For waste-minimising initiatives implemented at the plastic-free 2019 conference of the Australian Marine Society, see Best Practice 7.4. For sustainability concerns in conference catering, see Section 7.2.3.

Best Practice 7.4: Plastic-free 2019 conference of the Australian Marine Sciences Association

Taken from Ref. [277].

In response to the growing problem of plastic pollution, the Australian Marine Sciences Association undertook to make their 2019 conference 100% plastic free. Concrete measures they implemented for their roughly 600 delegates included:

- plastic-free cardboard name badges with bamboo lanyards and metal clips
- complimentary fabric tote bags with conference logo
- no printed envelopes for registration packs, no printed conference abstracts
- any printing necessary was done on sustainably-sourced paper, using a solar-powered printer
• sustainably-sourced pencils instead of pens, with sharpening stations provided
• no packaged sweets
• delegates were asked to bring reusable water bottles, or pre-register to buy them at the conference
• water jugs with glassware provided at back of each presentation room
• reusable, washable plates, cups silverware and glassware for all meal and coffee breaks
• vegetarian catering for tea breaks

These measures were implemented without affecting the budget, although some solutions reportedly took significant planning and forethought, and clear communication with the event organiser and providers.

7.2.3 Catering Tableware

A life-cycle analysis by the UN Environment Programme concludes that “reusable tableware consistently outperforms single-use tableware in all the studies and across all environmental impact categories (with water use being the exception, because of washing). This type of analysis takes into account all the variables that affect the environmental impact of a product, from manufacturing to end-of-life treatment. The case for reusable tableware is strengthened in countries where renewable energy makes up a high proportion of the grid mix and where end-of-life treatment options are not well developed” [278].

In outdoor or remote environments or ‘pop-up’ events with no fixed catering facilities, where reusable tableware is impractical, single-use biodegradable tableware is preferable to other single-use tableware if it is industrially composted mixed in with food waste [278].

Unlike emissions due to reusables, which are dominated by their use phase due to repeated washing, the main impact of biodegradable tableware is due to its production. For conventional plastic, a significant role is also played by end-of-life management. Quantitative analysis of their relative emissions is

16Industrial composting of household food waste is currently not the norm in most geographical locations within the USA [279], and many existing industrial composters do not accept biodegradable plastic waste [280].
thus strongly dependent on assumptions about manufacture and disposal, including the material demand. On the practical side, to minimise this impact when planning conference catering one should always choose the lightest-weight disposable tableware fit for purpose, preferably manufactured in a country with a significant proportion of renewables in its energy and electricity mix. For a comparison of emissions due to different choices of disposable catering tableware for pop-up catering, see Case Study 7.1.

Case Study 7.1: Comparing tableware for pop-up catering

The production and disposal of single-use tableware has a significant impact across all environmental factors, including acidification, eutrophication, human health, land use and water depletion. However we will focus here only on its GHG emissions.

We will consider for benchmarking purposes a large-scale conference with 1,000 attendees and informal lunchtime catering (i.e., with no dishwashing capability), and compare the life-cycle emissions due to tableware made from conventional plastics, which are disposed of by a combination of incineration and landfill according to the European average (presumed food remnants making them unsuitable for recycling), and from biodegradable bioplastics, which are industrially composted along with the food remnants.

We assume each set of tableware consists of a dinner plate and cup, a knife and fork, and a paper napkin and tray mat, all manufactured to the same size and thickness, but with possible differences in weight due to their respective material densities. A full list of assumptions and details of the analysis can be found in the original article [281].

The total emissions for 1,000 sets of conventional polystyrene tableware is 221 kg CO$_2$e, as compared with 109 kg CO$_2$e for the biodegradable bioplastic tableware, a saving of 112 kg CO$_2$e, around the emissions of a flight from Paris to Geneva. For the purposes of comparison, we include here the emissions cost of 1,000 dishes and cups from a 2015 study by Italian plastics company Pro.mo [282]. They put the total emissions due to reusables at 26 kg CO$_2$e, with the emissions due to conventional plastic dishes and cups (polypropylene in this case) at 79 kg CO$_2$e. Note that these figures are specific to the electricity and energy mix of the European market, which has a large impact on the dominant emissions in all cases.
8 Outlook

The central message of this document is clear:

Assessing, reporting on, defining targets for, and undertaking coordinated efforts to limit our negative impacts on the world’s climate and ecosystems must become an integral part of how we plan and undertake all aspects of our research.

Achieving this relies on individual-, group- and institution-level actions, and concrete suggestions are made in this document.

This is a call to reflect with humility on these suggestions, and this is a call to action. This is a call to consider the opportunities that reassessing the environmental sustainability of our work practices also offers for addressing systemic barriers to inclusivity and accessibility.

But it must be understood that this and similar documents are only the beginning: The HECAP+ community must come together to secure a sustainable future for our fields.

Thank you again for taking the time to read this document.
Acknowledgments

This initiative was conceived at the workshop “Sustainable HEP”, which was organised by Niklas Beisert, Valerie Domcke, Astrid Eichhorn and Kai Schmitz, and hosted by CERN and held online 28 to 30 June 2021.

The authors acknowledge input received during: the Sustainable HEP Mini-Workshop, 18 January 2022; the Sustainability & Inclusion Panel Discussion at the 21st String Phenomenology Conference, hosted by the University of Liverpool, 4 to 8 July 2022; the Education and Outreach track of the International Conference on High Energy Physics 2022 (ICHEP2022), Bologna, 6 to 13 July 2022; the second Sustainable HEP workshop, 5 to 7 September 2022.

The authors thank Shehu Shuaibu Abdulassalam, James Alvey, Nicolas Arnaud, Gabriela Barenboim, Till Bargheer, Niklas Beisert, Micah Buuck, Enrico Cennini, Nikola Crnković, Valerie Domcke, Astrid Eichhorn, Daniel Errandonea, Stefan Fredenhagen, Elina Fuchs, Tetyana Galatyuk, Spencer Gessner, Clare Gratrex, Roberto Guida, Aaron Held, Tomas Kasemets, Stavros Katsanevas, Yves Kemp, Jinsu Kim, Ben Krikler, Valerie Lang, Paul Laycock, Roberto Lineros, Benno List, Jenny List, Daniel Maitre, Sudhir Malik, Beatrice Mandelli, Pablo Martínez-Miravé, Chris Parkes, Michael Peskin, Ruth Pöttgen, Melissa Quinnan, Salvatore Rappoccio, Rachel Rosten, Jan Rybizki, Filippo Sala, Wayne Salter, Quentin Salvi, Sabrina Schadegg, Kai Schmitz, Kathrin Schulz, Jason St John, Lindsay Stringer, Denise Völker, Rodney Walker, Tien-Tien Yu, and Sebastian Zell for invaluable input.

The authors thank Jessie Muir for producing the individual, group and institution icons for the recommendations.
Tables A.1 and A.2 contain the raw data that was used to produce Figure 1.4. Each set of data was taken from a publicly-available environmental report issued by (members of) the institution in question; the original documents are referenced below.

Our approach differs from existing estimates of the GHG footprint per researcher in the divisor used to compute this quantity. We shared the emissions per resource equally by the total number using that resource, whether it be total number of employees, or research staff, or in the case of large laboratories like CERN, the number of Users, rather than using the same divisor throughout. For instance, while we divide the commuting emissions for each institute by the total number of employees, we assign the business travel emissions solely to the research staff, assuming the support staff have negligible long-distance travel. For concreteness, we have colour-coded the per-researcher estimates in Table A.1 by the denominators used in their computation, with the colour key provided in Table A.2.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1 (direct)</td>
<td>78,169</td>
<td>4.4</td>
<td>446</td>
<td>1.4</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0.7</td>
<td>325.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Scope 2 (indirect)</td>
<td>10,672</td>
<td>2.0</td>
<td>779</td>
<td>2.4</td>
<td>570</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>143,687</td>
<td>38.6</td>
</tr>
<tr>
<td>Travel (business)</td>
<td>3,330</td>
<td>1.0</td>
<td>1,280</td>
<td>8.5</td>
<td>1,449</td>
<td>3.2</td>
<td>785</td>
<td>3.3</td>
<td>2,658</td>
<td>2.3</td>
</tr>
<tr>
<td>Travel (commuting)</td>
<td>5,836</td>
<td>1.1</td>
<td>139</td>
<td>0.9</td>
<td>1,700</td>
<td>0.2</td>
<td>146</td>
<td>0.7</td>
<td>5,393</td>
<td>2.9</td>
</tr>
<tr>
<td>Food</td>
<td>738</td>
<td>0.2</td>
<td>16</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement</td>
<td>178,010</td>
<td>10.1</td>
<td>64</td>
<td>0.4</td>
<td>497</td>
<td>0.3</td>
<td></td>
<td></td>
<td>259</td>
<td>1.1</td>
</tr>
<tr>
<td>Waste treatment</td>
<td>2,194</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CERN data for 2019 is taken from Refs. [1, 12, 16, 245], MPIA data for 2019 from Ref. [17], ETH Zürich DPHYS data from 2018 taken from Ref. [18], Nikhef data from 2019 from Ref. [19], and FNAL data from Refs. [2, 283]. Scope 3 estimates incomplete for all but CERN.

Table A.1: Average annual GHG emissions (tCO$_2$e) for researchers at various HECAP+ institutions, by sector. Colour-coding corresponds to the key in Table A.2 for staff type that was used in the divisor to compute the emissions per researcher. The abbreviations ‘Inst.’ and ‘Res.’ are used to indicate institute and per-researcher emissions, respectively.

\(^a\)This corresponds to the total ETHZ Scope 2 emissions rescaled by the percentage of employees working in DPhys.
Table A.2: Institute employee statistics, colour-coded by type. The same colour codes are used in the researcher numbers above to show which staff statistics were used as the divisor in each case.

<table>
<thead>
<tr>
<th>Employee type</th>
<th>CERN</th>
<th>MPIA</th>
<th>ETHZ</th>
<th>DPHYS</th>
<th>Nikhef</th>
<th>FNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total staff</td>
<td>5,235</td>
<td>320</td>
<td>630</td>
<td>350</td>
<td>1829</td>
<td></td>
</tr>
<tr>
<td>Research staff</td>
<td>3,430</td>
<td>150</td>
<td>450</td>
<td>350</td>
<td>1162<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Users</td>
<td>17,663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3725</td>
</tr>
</tbody>
</table>

^aIncludes technical staff.

Employment statistics: CERN [16], MPIA [17], ETH [18], Nikhef [19], FNAL [284].
References

Environmental sustainability in basic research

[138] CERN Health & Safety and Environmental Protection group, Private communication, June 2021.

Environmental sustainability in basic research

[283] E. Mieland, Private communication, August 2022.

[284] L. Pederson, Private communication, August 2022.
Acronyms and Abbreviations

CERN Conseil Européen pour la Recherche Nucléaire (European Organization for Nuclear Research). 21, 37, 48, 52, 65, 72, 87, 105, 118

CLIC Compact Linear Collider. 89

CO$_2$e CO$_2$ equivalent. For any GHG it is the mass of CO$_2$ that would result in the same amount of warming. It is computed by multiplying the total mass of a GHG by its global warming potential, GWP. 16, 19, 67, 115, 149

CPU Central Processing Unit. 41, 102

DESY Deutsches Elektronen-Synchrotron. 61, 82, 87, 108

DPhys Department of Physics. 22, 72, 118

ETH Zürich Eidgenössische Technische Hochschule Zürich. 22, 72, 118

FNAL Fermi National Accelerator Laboratory. 22, 37, 72, 118

GHG Greenhouse gas. 15, 19, 37, 54, 62, 69, 93, 105, 118, 148

GPU Graphics Processing Unit. 41, 102

GWP Global Warming Potential. Factor used to quantify the warming potential due to a certain mass of GHG relative to that of CO$_2$. Defined as the ratio of the infrared radiation absorbed by a certain mass of GHG to that absorbed by the same mass of CO$_2$ over a chosen time frame, usually 20, 100 or 500 years. 95, 148

HECAP+ High Energy Physics, Cosmology, Astroparticle Physics, plus Hadron and Nuclear Physics. 15, 18, 37, 48, 69, 86, 153

HEP High Energy Physics. 42, 80, 90

HL-LHC High-Luminosity Large Hadron Collider. 37, 101

HPC High Performance Computing. 37
HTC High-throughput Computing. 37

I.FAST Innovation Fostering in Accelerator Science and Technology, Horizon 2020 Research Innovation Action. 87, 108

IAEA International Atomic Energy Agency. 55

IPCC Intergovernmental Panel on Climate Change. 19, 48

LHC Large Hadron Collider. 21, 37, 48, 78

LHCb Large Hadron Collider beauty experiment. 41, 61, 75, 87, 94

MPIA Max Planck Institute for Astronomy. 22, 37, 118

Nikhef Nationaal Instituut voor Kernfysica en Hoge-Energiefysica (National Institute for Nuclear and High energy physics). 22, 118

PUE Power Usage Effectiveness. 44–46, 102

SDG UN Sustainable Development Goal. 18

SESAME Synchrotron-Light for Experimental Science and Applications in the Middle East. 52, 59

STFC Science and Technology Facilities Council. 87

tCO₂ metric tonne CO₂. 27

tCO₂e Metric tonne CO₂e. 21, 40, 48, 67, 103, 112, 118
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1.1</td>
<td>Nikhef renovation and sustainability plan</td>
<td>23</td>
</tr>
<tr>
<td>BP2.1</td>
<td>Optimization of software</td>
<td>43</td>
</tr>
<tr>
<td>BP2.2</td>
<td>Cooling in Swiss National Supercomputing Centre (CSCS)</td>
<td>44</td>
</tr>
<tr>
<td>BP2.3</td>
<td>Sustainable design for Prevesin Computing Centre, CERN</td>
<td>45</td>
</tr>
<tr>
<td>BP2.4</td>
<td>Green-IT Cube</td>
<td>46</td>
</tr>
<tr>
<td>BP3.1</td>
<td>Recycling energy at DESY</td>
<td>61</td>
</tr>
<tr>
<td>BP4.1</td>
<td>Plant-based catering at conferences and workshops</td>
<td>67</td>
</tr>
<tr>
<td>BP5.1</td>
<td>Green travel top-ups on Erasmus+</td>
<td>81</td>
</tr>
<tr>
<td>BP5.2</td>
<td>DESY sustainable travel regulations</td>
<td>82</td>
</tr>
<tr>
<td>BP6.1</td>
<td>Life cycle data for a silicon wafer</td>
<td>89</td>
</tr>
<tr>
<td>BP6.2</td>
<td>Carbon footprint accounting with the Labos1point5 tool</td>
<td>91</td>
</tr>
<tr>
<td>BP6.3</td>
<td>Multi-turn energy-recovery accelerator</td>
<td>94</td>
</tr>
<tr>
<td>BP7.1</td>
<td>Sustainability in raw materials supply chains</td>
<td>109</td>
</tr>
<tr>
<td>BP7.2</td>
<td>CERN sustainable procurement and waste policy</td>
<td>110</td>
</tr>
<tr>
<td>BP7.3</td>
<td>Re-purposing shielding blocks</td>
<td>112</td>
</tr>
<tr>
<td>BP7.4</td>
<td>Plastic-free conference, Australian Marine Sciences Association</td>
<td>113</td>
</tr>
</tbody>
</table>
Case Studies

CS3.1 Filling the energy gap with nuclear reactors 55
CS3.2 Local solar power at CERN .. 56
CS3.3 CERN-LINK — Clean power from the desert 59
CS4.1 Sustainable catering at CERN Restaurant 1 66
CS5.1 Sustainable travel to CERN .. 76
CS5.2 Comparative travel emissions for ICHEP conferences 78
CS5.3 Cosmology from Home .. 83
CS6.1 Sustainability of Future Colliders 90
CS6.2 Plasma wakefield for future accelerators 94
CS6.3 LHCb and sustainability .. 97
CS7.1 Comparing tableware for pop-up catering 115
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1.1</td>
<td>Necessary reduction in global emissions</td>
<td>20</td>
</tr>
<tr>
<td>Fig 1.2</td>
<td>Global emissions (1990–2015) by income groups</td>
<td>20</td>
</tr>
<tr>
<td>Fig 1.3</td>
<td>2016 global GHG emissions vs 2019 CERN emissions</td>
<td>21</td>
</tr>
<tr>
<td>Fig 1.4</td>
<td>Reported workplace GHG emissions for researchers at HECAP+ institutions</td>
<td>22</td>
</tr>
<tr>
<td>Fig 1.5</td>
<td>Emissions reduction from individual actions</td>
<td>24</td>
</tr>
<tr>
<td>Fig 1.6</td>
<td>United Nations Sustainable Development Goals</td>
<td>30</td>
</tr>
<tr>
<td>Fig 3.1</td>
<td>Primary energy consumption is dominated by fossil fuels</td>
<td>49</td>
</tr>
<tr>
<td>Fig 3.2</td>
<td>IPCC mitigation potential for alternative sources of energy</td>
<td>52</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>CERN roofs suitable for solar cells</td>
<td>56</td>
</tr>
<tr>
<td>Fig 3.4</td>
<td>Map for CERN-LINK</td>
<td>60</td>
</tr>
<tr>
<td>Fig 4.1</td>
<td>Environmental impact of food production</td>
<td>64</td>
</tr>
<tr>
<td>Fig 4.2</td>
<td>Annual carbon opportunity due to changes in diet</td>
<td>65</td>
</tr>
<tr>
<td>Fig 4.3</td>
<td>GHG emissions per 100 g of protein</td>
<td>66</td>
</tr>
<tr>
<td>Fig 5.1</td>
<td>Mobility emissions</td>
<td>74</td>
</tr>
<tr>
<td>Fig 5.2</td>
<td>Emissions per distance for two different ICHEP editions</td>
<td>79</td>
</tr>
<tr>
<td>Fig 5.3</td>
<td>ICHEP participants by development index</td>
<td>81</td>
</tr>
<tr>
<td>Fig 5.4</td>
<td>Geographical distribution of CfH participants over time</td>
<td>85</td>
</tr>
<tr>
<td>Fig 6.1</td>
<td>Site power required for proposed e^+e^- colliders</td>
<td>91</td>
</tr>
<tr>
<td>Fig 6.2</td>
<td>CERN Scope 1 and Scope 2 emissions for 2017 and 2018</td>
<td>99</td>
</tr>
<tr>
<td>Fig 6.3</td>
<td>Expected relative emissions from LHCb operations in Run 3</td>
<td>99</td>
</tr>
<tr>
<td>Fig 6.4</td>
<td>Expected Scope 1 emissions from LHCb detector gas systems in Run 3</td>
<td>101</td>
</tr>
<tr>
<td>Fig 7.1</td>
<td>Global E-waste generated in 2019</td>
<td>112</td>
</tr>
</tbody>
</table>
Tables

Tab5.1 Measures and subsidies for greener commuting 73
Tab5.2 Comparison of modes of travel to CERN from different origins 77
Tab5.3 Travel GHG emissions for participants of recent ICHEP conferences 78
Tab5.4 Green travel supplements for Erasmus+ participants 82
Tab6.1 Inputs, outputs and emissions of silicon wafer production 90
Tab6.2 Warming potential of selected GHGs 96
Tab7.1 Environmental impact associated with primary metals 108
TabA.1 Average annual GHG emission data for HECAP+ institutions 118
TabA.2 Employee statistics for HECAP+ institutions 119
Authors

Shankha Banerjee CERN, Switzerland
Thomas Y. Chen Department of Computer Science, Columbia University, USA
Claire David York University, ON, Canada, Fermi National Accelerator Laboratory, IL, USA
Michael Düren II. Physikalisches Institut and Centre for International Development and Environmental Research, Justus Liebig University Giessen, Germany
Harold Erbin Massachusetts Institute of Technology, Cambridge, MA, USA; NSF AI Institute for Artificial Intelligence and Fundamental Interactions; Université Paris Saclay, CEA, LIST, France
Jacopo Ghiglieri SUBATECH (Université de Nantes, IMT Atlantique, IN2P3/CNRS), France
Mandeep S. S. Gill Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, CA, USA; Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN, USA; Fermi National Accelerator Laboratory, Batavia IL, USA
L Glaser University of Vienna, Austria
Christian Gütschow University College London, United Kingdom
Jack Joseph Hall The Department of Physics and Astronomy, University of Sheffield, United Kingdom
Johannes Hampp Centre for International Development and Environmental Research, Justus Liebig University, Germany
Patrick Koppenburg Nikhef, National Institute for Subatomic Physics, Netherlands
Matthias Koschnitzke Deutsches Elektronen-Synchrotron DESY; University of Hamburg, Germany
Kristin Lohwasser The Department of Physics and Astronomy, University of Sheffield, United Kingdom
Rakhi Mahbubani Rudjer Boskovic Institute, Division of Theoretical Physics, Zagreb, Croatia
Viraf Mehta Institute for Astrophysics and Geophysics, University of Göttingen, Germany
Peter Millington Department of Physics and Astronomy, University of Manchester, United Kingdom
Ayan Paul Deutsches Elektronen-Synchrotron DESY, Germany; Northeastern University, USA
Frauke Poblotzki Deutsches Elektronen-Synchrotron DESY, Germany
Karolos Potamianos Department of Physics, University of Warwick, United Kingdom
Nikolina Šarčević School of Mathematics, Statistics and Physics, Newcastle University, United Kingdom
Rajeev Singh Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University, USA
Hannah Wakeling Department of Physics, McGill University, QC, Canada; John Adams Institute, University of Oxford, United Kingdom.
Rodney Walker Ludwig-Maximilians-Universität, Munich, Germany
Matthijs van der Wild Department of Physics, University of Durham, United Kingdom
Pia Zurita Complutense University of Madrid, Spain
Endorsers

Individual endorsements can be made at https://indico.cern.ch/e/sustainable-hecapplus.

To make an institutional endorsement, please email sustainable-hecapplus@proton.me.

An up-to-date list of endorsers can be found at https://sustainable-hecapplus.github.io/.